Proof of Theorem ftc1cnnclem
Step | Hyp | Ref
| Expression |
1 | | ftc1cnnc.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | ftc1cnnc.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | iccssre 12460 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
4 | 1, 2, 3 | syl2anc 573 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
5 | | ftc1cnnclem.x1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
6 | 4, 5 | sseldd 3753 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ ℝ) |
7 | | ftc1cnnclem.y1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) |
8 | 4, 7 | sseldd 3753 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ ℝ) |
9 | | ltle 10332 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
10 | 6, 8, 9 | syl2anc 573 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) |
11 | 10 | imp 393 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
12 | | ftc1cnnc.g |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
13 | | ftc1cnnc.le |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
14 | | ssid 3773 |
. . . . . . . . . . . 12
⊢ (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵) |
15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) |
16 | | ioossre 12440 |
. . . . . . . . . . . 12
⊢ (𝐴(,)𝐵) ⊆ ℝ |
17 | 16 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
18 | | ftc1cnnc.i |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈
𝐿1) |
19 | | ftc1cnnc.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
20 | | cncff 22916 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
22 | 12, 1, 2, 13, 15, 17, 18, 21, 5, 7 | ftc1lem1 24018 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≤ 𝑌) → ((𝐺‘𝑌) − (𝐺‘𝑋)) = ∫(𝑋(,)𝑌)(𝐹‘𝑡) d𝑡) |
23 | 11, 22 | syldan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((𝐺‘𝑌) − (𝐺‘𝑋)) = ∫(𝑋(,)𝑌)(𝐹‘𝑡) d𝑡) |
24 | 1 | rexrd 10295 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
25 | 2 | rexrd 10295 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
26 | | elicc1 12424 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) |
27 | 26 | biimpa 462 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵)) |
28 | 27 | simp2d 1137 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑋) |
29 | 24, 25, 5, 28 | syl21anc 1475 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ≤ 𝑋) |
30 | | iccleub 12434 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑌
∈ (𝐴[,]𝐵)) → 𝑌 ≤ 𝐵) |
31 | 24, 25, 7, 30 | syl3anc 1476 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 ≤ 𝐵) |
32 | | ioossioo 12471 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 ≤ 𝑋 ∧ 𝑌 ≤ 𝐵)) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵)) |
33 | 24, 25, 29, 31, 32 | syl22anc 1477 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵)) |
34 | 33 | sselda 3752 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ (𝐴(,)𝐵)) |
35 | 21 | ffvelrnda 6504 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑡) ∈ ℂ) |
36 | 34, 35 | syldan 579 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐹‘𝑡) ∈ ℂ) |
37 | | ftc1cnnclem.c |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑐 ∈ (𝐴(,)𝐵)) |
38 | 21, 37 | ffvelrnd 6505 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝑐) ∈ ℂ) |
39 | 38 | adantr 466 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐹‘𝑐) ∈ ℂ) |
40 | 36, 39 | npcand 10602 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹‘𝑡) − (𝐹‘𝑐)) + (𝐹‘𝑐)) = (𝐹‘𝑡)) |
41 | 40 | itgeq2dv 23768 |
. . . . . . . . . . 11
⊢ (𝜑 → ∫(𝑋(,)𝑌)(((𝐹‘𝑡) − (𝐹‘𝑐)) + (𝐹‘𝑐)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹‘𝑡) d𝑡) |
42 | 36, 39 | subcld 10598 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹‘𝑡) − (𝐹‘𝑐)) ∈ ℂ) |
43 | | ioombl 23553 |
. . . . . . . . . . . . . . 15
⊢ (𝑋(,)𝑌) ∈ dom vol |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋(,)𝑌) ∈ dom vol) |
45 | | fvexd 6346 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑡) ∈ V) |
46 | 21 | feqmptd 6393 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑡))) |
47 | 46, 18 | eqeltrrd 2851 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑡)) ∈
𝐿1) |
48 | 33, 44, 45, 47 | iblss 23791 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹‘𝑡)) ∈
𝐿1) |
49 | | fconstmpt 5302 |
. . . . . . . . . . . . . 14
⊢ ((𝑋(,)𝑌) × {(𝐹‘𝑐)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹‘𝑐)) |
50 | | mblvol 23518 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))) |
51 | 43, 50 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)) |
52 | | ioossicc 12464 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)) |
54 | | iccmbl 23554 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol) |
55 | 6, 8, 54 | syl2anc 573 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋[,]𝑌) ∈ dom vol) |
56 | | mblss 23519 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑋[,]𝑌) ⊆ ℝ) |
58 | | mblvol 23518 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌))) |
59 | 55, 58 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌))) |
60 | | iccvolcl 23555 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) →
(vol‘(𝑋[,]𝑌)) ∈
ℝ) |
61 | 6, 8, 60 | syl2anc 573 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ) |
62 | 59, 61 | eqeltrrd 2851 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ) |
63 | | ovolsscl 23474 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ) |
64 | 53, 57, 62, 63 | syl3anc 1476 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ) |
65 | 51, 64 | syl5eqel 2854 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ) |
66 | | iblconst 23804 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹‘𝑐) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹‘𝑐)}) ∈
𝐿1) |
67 | 44, 65, 38, 66 | syl3anc 1476 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑋(,)𝑌) × {(𝐹‘𝑐)}) ∈
𝐿1) |
68 | 49, 67 | syl5eqelr 2855 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹‘𝑐)) ∈
𝐿1) |
69 | | eqid 2771 |
. . . . . . . . . . . . . . 15
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
70 | 69 | subcn 22889 |
. . . . . . . . . . . . . . . 16
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
71 | 70 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
72 | 21, 33 | feqresmpt 6394 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹‘𝑡))) |
73 | | rescncf 22920 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋(,)𝑌) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))) |
74 | 33, 19, 73 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
75 | 72, 74 | eqeltrrd 2851 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹‘𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
76 | | ioossre 12440 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋(,)𝑌) ⊆ ℝ |
77 | | ax-resscn 10199 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ
⊆ ℂ |
78 | 76, 77 | sstri 3761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋(,)𝑌) ⊆ ℂ |
79 | | ssid 3773 |
. . . . . . . . . . . . . . . . 17
⊢ ℂ
⊆ ℂ |
80 | | cncfmptc 22934 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑐) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑡 ∈
(𝑋(,)𝑌) ↦ (𝐹‘𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
81 | 78, 79, 80 | mp3an23 1564 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑐) ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹‘𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
82 | 38, 81 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹‘𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
83 | 69, 71, 75, 82 | cncfmpt2f 22937 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹‘𝑡) − (𝐹‘𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
84 | | cnmbf 23646 |
. . . . . . . . . . . . . 14
⊢ (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹‘𝑡) − (𝐹‘𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹‘𝑡) − (𝐹‘𝑐))) ∈ MblFn) |
85 | 43, 83, 84 | sylancr 575 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹‘𝑡) − (𝐹‘𝑐))) ∈ MblFn) |
86 | 36, 48, 39, 68, 85 | iblsubnc 33803 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹‘𝑡) − (𝐹‘𝑐))) ∈
𝐿1) |
87 | 40 | mpteq2dva 4879 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹‘𝑡) − (𝐹‘𝑐)) + (𝐹‘𝑐))) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹‘𝑡))) |
88 | 87, 72 | eqtr4d 2808 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹‘𝑡) − (𝐹‘𝑐)) + (𝐹‘𝑐))) = (𝐹 ↾ (𝑋(,)𝑌))) |
89 | | iblmbf 23754 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) |
90 | 18, 89 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈ MblFn) |
91 | | mbfres 23631 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ MblFn ∧ (𝑋(,)𝑌) ∈ dom vol) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn) |
92 | 90, 43, 91 | sylancl 574 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn) |
93 | 88, 92 | eqeltrd 2850 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹‘𝑡) − (𝐹‘𝑐)) + (𝐹‘𝑐))) ∈ MblFn) |
94 | 42, 86, 39, 68, 93 | itgaddnc 33802 |
. . . . . . . . . . 11
⊢ (𝜑 → ∫(𝑋(,)𝑌)(((𝐹‘𝑡) − (𝐹‘𝑐)) + (𝐹‘𝑐)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹‘𝑐) d𝑡)) |
95 | 41, 94 | eqtr3d 2807 |
. . . . . . . . . 10
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐹‘𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹‘𝑐) d𝑡)) |
96 | 95 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹‘𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹‘𝑐) d𝑡)) |
97 | | itgconst 23805 |
. . . . . . . . . . . . 13
⊢ (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹‘𝑐) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹‘𝑐) d𝑡 = ((𝐹‘𝑐) · (vol‘(𝑋(,)𝑌)))) |
98 | 44, 65, 38, 97 | syl3anc 1476 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐹‘𝑐) d𝑡 = ((𝐹‘𝑐) · (vol‘(𝑋(,)𝑌)))) |
99 | 98 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹‘𝑐) d𝑡 = ((𝐹‘𝑐) · (vol‘(𝑋(,)𝑌)))) |
100 | 6 | adantr 466 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ) |
101 | 8 | adantr 466 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ) |
102 | | ovolioo 23556 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 ≤ 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌 − 𝑋)) |
103 | 100, 101,
11, 102 | syl3anc 1476 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌 − 𝑋)) |
104 | 51, 103 | syl5eq 2817 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌 − 𝑋)) |
105 | 104 | oveq2d 6812 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((𝐹‘𝑐) · (vol‘(𝑋(,)𝑌))) = ((𝐹‘𝑐) · (𝑌 − 𝑋))) |
106 | 99, 105 | eqtrd 2805 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹‘𝑐) d𝑡 = ((𝐹‘𝑐) · (𝑌 − 𝑋))) |
107 | 106 | oveq2d 6812 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹‘𝑐) d𝑡) = (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 + ((𝐹‘𝑐) · (𝑌 − 𝑋)))) |
108 | 23, 96, 107 | 3eqtrd 2809 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((𝐺‘𝑌) − (𝐺‘𝑋)) = (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 + ((𝐹‘𝑐) · (𝑌 − 𝑋)))) |
109 | 108 | oveq1d 6811 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) = ((∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 + ((𝐹‘𝑐) · (𝑌 − 𝑋))) / (𝑌 − 𝑋))) |
110 | | ovexd 6829 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹‘𝑡) − (𝐹‘𝑐)) ∈ V) |
111 | 110, 86 | itgcl 23770 |
. . . . . . . . 9
⊢ (𝜑 → ∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 ∈ ℂ) |
112 | 111 | adantr 466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 ∈ ℂ) |
113 | 38 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝐹‘𝑐) ∈ ℂ) |
114 | 8, 6 | resubcld 10664 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℝ) |
115 | 114 | recnd 10274 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑌 − 𝑋) ∈ ℂ) |
116 | 115 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝑌 − 𝑋) ∈ ℂ) |
117 | 113, 116 | mulcld 10266 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((𝐹‘𝑐) · (𝑌 − 𝑋)) ∈ ℂ) |
118 | 6, 8 | posdifd 10820 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌 − 𝑋))) |
119 | 118 | biimpa 462 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 < (𝑌 − 𝑋)) |
120 | 119 | gt0ne0d 10798 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝑌 − 𝑋) ≠ 0) |
121 | 112, 117,
116, 120 | divdird 11045 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 + ((𝐹‘𝑐) · (𝑌 − 𝑋))) / (𝑌 − 𝑋)) = ((∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋)) + (((𝐹‘𝑐) · (𝑌 − 𝑋)) / (𝑌 − 𝑋)))) |
122 | 113, 116,
120 | divcan4d 11013 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (((𝐹‘𝑐) · (𝑌 − 𝑋)) / (𝑌 − 𝑋)) = (𝐹‘𝑐)) |
123 | 122 | oveq2d 6812 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋)) + (((𝐹‘𝑐) · (𝑌 − 𝑋)) / (𝑌 − 𝑋))) = ((∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋)) + (𝐹‘𝑐))) |
124 | 109, 121,
123 | 3eqtrd 2809 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) = ((∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋)) + (𝐹‘𝑐))) |
125 | 124 | oveq1d 6811 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) − (𝐹‘𝑐)) = (((∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋)) + (𝐹‘𝑐)) − (𝐹‘𝑐))) |
126 | 112, 116,
120 | divcld 11007 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋)) ∈ ℂ) |
127 | 126, 113 | pncand 10599 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (((∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋)) + (𝐹‘𝑐)) − (𝐹‘𝑐)) = (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋))) |
128 | 125, 127 | eqtrd 2805 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) − (𝐹‘𝑐)) = (∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋))) |
129 | 128 | fveq2d 6337 |
. . 3
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) − (𝐹‘𝑐))) = (abs‘(∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋)))) |
130 | 112, 116,
120 | absdivd 14402 |
. . 3
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡 / (𝑌 − 𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) / (abs‘(𝑌 − 𝑋)))) |
131 | 114 | adantr 466 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝑌 − 𝑋) ∈ ℝ) |
132 | | 0re 10246 |
. . . . . . 7
⊢ 0 ∈
ℝ |
133 | | ltle 10332 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (𝑌
− 𝑋) ∈ ℝ)
→ (0 < (𝑌 −
𝑋) → 0 ≤ (𝑌 − 𝑋))) |
134 | 132, 131,
133 | sylancr 575 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (0 < (𝑌 − 𝑋) → 0 ≤ (𝑌 − 𝑋))) |
135 | 119, 134 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 ≤ (𝑌 − 𝑋)) |
136 | 131, 135 | absidd 14369 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘(𝑌 − 𝑋)) = (𝑌 − 𝑋)) |
137 | 136 | oveq2d 6812 |
. . 3
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) / (abs‘(𝑌 − 𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) / (𝑌 − 𝑋))) |
138 | 129, 130,
137 | 3eqtrd 2809 |
. 2
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) − (𝐹‘𝑐))) = ((abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) / (𝑌 − 𝑋))) |
139 | 112 | abscld 14383 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) ∈ ℝ) |
140 | 42 | abscld 14383 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) ∈ ℝ) |
141 | | cncfss 22922 |
. . . . . . . . . . . 12
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)) |
142 | 77, 79, 141 | mp2an 672 |
. . . . . . . . . . 11
⊢
(ℂ–cn→ℝ)
⊆ (ℂ–cn→ℂ) |
143 | | abscncf 22924 |
. . . . . . . . . . 11
⊢ abs
∈ (ℂ–cn→ℝ) |
144 | 142, 143 | sselii 3749 |
. . . . . . . . . 10
⊢ abs
∈ (ℂ–cn→ℂ) |
145 | 144 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → abs ∈
(ℂ–cn→ℂ)) |
146 | 145, 83 | cncfmpt1f 22936 |
. . . . . . . 8
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
147 | | cnmbf 23646 |
. . . . . . . 8
⊢ (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈ MblFn) |
148 | 43, 146, 147 | sylancr 575 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈ MblFn) |
149 | 110, 86, 148 | iblabsnc 33806 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈
𝐿1) |
150 | 140, 149 | itgrecl 23784 |
. . . . 5
⊢ (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡 ∈ ℝ) |
151 | 150 | adantr 466 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡 ∈ ℝ) |
152 | | ftc1cnnclem.e |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
153 | 152 | rpred 12075 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℝ) |
154 | 114, 153 | remulcld 10276 |
. . . . 5
⊢ (𝜑 → ((𝑌 − 𝑋) · 𝐸) ∈ ℝ) |
155 | 154 | adantr 466 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((𝑌 − 𝑋) · 𝐸) ∈ ℝ) |
156 | 111 | cjcld 14144 |
. . . . . . . . 9
⊢ (𝜑 →
(∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) ∈ ℂ) |
157 | | cncfmptc 22934 |
. . . . . . . . . 10
⊢
(((∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑥 ∈
(𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
158 | 78, 79, 157 | mp3an23 1564 |
. . . . . . . . 9
⊢
((∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) ∈ ℂ → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
159 | 156, 158 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
160 | | nfcv 2913 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝐹‘𝑡) − (𝐹‘𝑐)) |
161 | | nfcsb1v 3698 |
. . . . . . . . . 10
⊢
Ⅎ𝑡⦋𝑥 / 𝑡⦌((𝐹‘𝑡) − (𝐹‘𝑐)) |
162 | | csbeq1a 3691 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑥 → ((𝐹‘𝑡) − (𝐹‘𝑐)) = ⦋𝑥 / 𝑡⦌((𝐹‘𝑡) − (𝐹‘𝑐))) |
163 | 160, 161,
162 | cbvmpt 4884 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹‘𝑡) − (𝐹‘𝑐))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ ⦋𝑥 / 𝑡⦌((𝐹‘𝑡) − (𝐹‘𝑐))) |
164 | 163, 83 | syl5eqelr 2855 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ⦋𝑥 / 𝑡⦌((𝐹‘𝑡) − (𝐹‘𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
165 | 159, 164 | mulcncf 23434 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) · ⦋𝑥 / 𝑡⦌((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
166 | | cnmbf 23646 |
. . . . . . 7
⊢ (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) · ⦋𝑥 / 𝑡⦌((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) · ⦋𝑥 / 𝑡⦌((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈ MblFn) |
167 | 43, 165, 166 | sylancr 575 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) · ⦋𝑥 / 𝑡⦌((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈ MblFn) |
168 | 42, 86, 148, 167 | itgabsnc 33811 |
. . . . 5
⊢ (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡) |
169 | 168 | adantr 466 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡) |
170 | | simpr 471 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌) |
171 | 153 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ) |
172 | | fconstmpt 5302 |
. . . . . . . . . 10
⊢ ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) |
173 | 152 | rpcnd 12077 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℂ) |
174 | | iblconst 23804 |
. . . . . . . . . . 11
⊢ (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈
𝐿1) |
175 | 44, 65, 173, 174 | syl3anc 1476 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈
𝐿1) |
176 | 172, 175 | syl5eqelr 2855 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈
𝐿1) |
177 | | cncfmptc 22934 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑡 ∈
(𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
178 | 78, 79, 177 | mp3an23 1564 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
179 | 173, 178 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
180 | 69, 71, 179, 146 | cncfmpt2f 22937 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
181 | | cnmbf 23646 |
. . . . . . . . . 10
⊢ (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))))) ∈ MblFn) |
182 | 43, 180, 181 | sylancr 575 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))))) ∈ MblFn) |
183 | 171, 176,
140, 149, 182 | iblsubnc 33803 |
. . . . . . . 8
⊢ (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))))) ∈
𝐿1) |
184 | 183 | adantr 466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))))) ∈
𝐿1) |
185 | | ftc1cnnclem.fc |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦 − 𝑐)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑐))) < 𝐸)) |
186 | 185 | ralrimiva 3115 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦 − 𝑐)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑐))) < 𝐸)) |
187 | 186 | adantr 466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦 − 𝑐)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑐))) < 𝐸)) |
188 | 16, 37 | sseldi 3750 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑐 ∈ ℝ) |
189 | | ftc1cnnclem.r |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
190 | 189 | rpred 12075 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ ℝ) |
191 | 188, 190 | resubcld 10664 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑐 − 𝑅) ∈ ℝ) |
192 | 191 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 − 𝑅) ∈ ℝ) |
193 | 6 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ) |
194 | | elioore 12410 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (𝑋(,)𝑌) → 𝑡 ∈ ℝ) |
195 | 194 | adantl 467 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ) |
196 | | ftc1cnnclem.x2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs‘(𝑋 − 𝑐)) < 𝑅) |
197 | 6, 188, 190 | absdifltd 14380 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs‘(𝑋 − 𝑐)) < 𝑅 ↔ ((𝑐 − 𝑅) < 𝑋 ∧ 𝑋 < (𝑐 + 𝑅)))) |
198 | 196, 197 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑐 − 𝑅) < 𝑋 ∧ 𝑋 < (𝑐 + 𝑅))) |
199 | 198 | simpld 482 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑐 − 𝑅) < 𝑋) |
200 | 199 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 − 𝑅) < 𝑋) |
201 | | eliooord 12438 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡 ∧ 𝑡 < 𝑌)) |
202 | 201 | adantl 467 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡 ∧ 𝑡 < 𝑌)) |
203 | 202 | simpld 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡) |
204 | 192, 193,
195, 200, 203 | lttrd 10404 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 − 𝑅) < 𝑡) |
205 | 8 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ) |
206 | 188, 190 | readdcld 10275 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑐 + 𝑅) ∈ ℝ) |
207 | 206 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 + 𝑅) ∈ ℝ) |
208 | 202 | simprd 483 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌) |
209 | | ftc1cnnclem.y2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs‘(𝑌 − 𝑐)) < 𝑅) |
210 | 8, 188, 190 | absdifltd 14380 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((abs‘(𝑌 − 𝑐)) < 𝑅 ↔ ((𝑐 − 𝑅) < 𝑌 ∧ 𝑌 < (𝑐 + 𝑅)))) |
211 | 209, 210 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑐 − 𝑅) < 𝑌 ∧ 𝑌 < (𝑐 + 𝑅))) |
212 | 211 | simprd 483 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 < (𝑐 + 𝑅)) |
213 | 212 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝑐 + 𝑅)) |
214 | 195, 205,
207, 208, 213 | lttrd 10404 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝑐 + 𝑅)) |
215 | 188 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑐 ∈ ℝ) |
216 | 190 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ) |
217 | 195, 215,
216 | absdifltd 14380 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡 − 𝑐)) < 𝑅 ↔ ((𝑐 − 𝑅) < 𝑡 ∧ 𝑡 < (𝑐 + 𝑅)))) |
218 | 204, 214,
217 | mpbir2and 692 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡 − 𝑐)) < 𝑅) |
219 | | fvoveq1 6819 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → (abs‘(𝑦 − 𝑐)) = (abs‘(𝑡 − 𝑐))) |
220 | 219 | breq1d 4797 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → ((abs‘(𝑦 − 𝑐)) < 𝑅 ↔ (abs‘(𝑡 − 𝑐)) < 𝑅)) |
221 | | fveq2 6333 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑡 → (𝐹‘𝑦) = (𝐹‘𝑡)) |
222 | 221 | fvoveq1d 6818 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑐))) = (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) |
223 | 222 | breq1d 4797 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → ((abs‘((𝐹‘𝑦) − (𝐹‘𝑐))) < 𝐸 ↔ (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) < 𝐸)) |
224 | 220, 223 | imbi12d 333 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑡 → (((abs‘(𝑦 − 𝑐)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑐))) < 𝐸) ↔ ((abs‘(𝑡 − 𝑐)) < 𝑅 → (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) < 𝐸))) |
225 | 224 | rspcv 3456 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦 − 𝑐)) < 𝑅 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑐))) < 𝐸) → ((abs‘(𝑡 − 𝑐)) < 𝑅 → (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) < 𝐸))) |
226 | 34, 187, 218, 225 | syl3c 66 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) < 𝐸) |
227 | | difrp 12071 |
. . . . . . . . . 10
⊢
(((abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈
ℝ+)) |
228 | 140, 171,
227 | syl2anc 573 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈
ℝ+)) |
229 | 226, 228 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈
ℝ+) |
230 | 229 | adantlr 694 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) ∈
ℝ+) |
231 | 180 | adantr 466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) |
232 | 170, 184,
230, 231 | itggt0cn 33814 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) d𝑡) |
233 | 171, 176,
140, 149, 182 | itgsubnc 33804 |
. . . . . . . 8
⊢ (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡)) |
234 | 233 | adantr 466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡)) |
235 | | itgconst 23805 |
. . . . . . . . . . 11
⊢ (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌)))) |
236 | 44, 65, 173, 235 | syl3anc 1476 |
. . . . . . . . . 10
⊢ (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌)))) |
237 | 236 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌)))) |
238 | 104 | oveq2d 6812 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌 − 𝑋))) |
239 | 173, 115 | mulcomd 10267 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 · (𝑌 − 𝑋)) = ((𝑌 − 𝑋) · 𝐸)) |
240 | 239 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (𝐸 · (𝑌 − 𝑋)) = ((𝑌 − 𝑋) · 𝐸)) |
241 | 237, 238,
240 | 3eqtrd 2809 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌 − 𝑋) · 𝐸)) |
242 | 241 | oveq1d 6811 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡) = (((𝑌 − 𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡)) |
243 | 234, 242 | eqtrd 2805 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹‘𝑡) − (𝐹‘𝑐)))) d𝑡 = (((𝑌 − 𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡)) |
244 | 232, 243 | breqtrd 4813 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 0 < (((𝑌 − 𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡)) |
245 | 150, 154 | posdifd 10820 |
. . . . . 6
⊢ (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡 < ((𝑌 − 𝑋) · 𝐸) ↔ 0 < (((𝑌 − 𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡))) |
246 | 245 | biimpar 463 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (((𝑌 − 𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡 < ((𝑌 − 𝑋) · 𝐸)) |
247 | 244, 246 | syldan 579 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹‘𝑡) − (𝐹‘𝑐))) d𝑡 < ((𝑌 − 𝑋) · 𝐸)) |
248 | 139, 151,
155, 169, 247 | lelttrd 10401 |
. . 3
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) < ((𝑌 − 𝑋) · 𝐸)) |
249 | 153 | adantr 466 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → 𝐸 ∈ ℝ) |
250 | | ltdivmul 11104 |
. . . 4
⊢
(((abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌 − 𝑋) ∈ ℝ ∧ 0 < (𝑌 − 𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) / (𝑌 − 𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) < ((𝑌 − 𝑋) · 𝐸))) |
251 | 139, 249,
131, 119, 250 | syl112anc 1480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) / (𝑌 − 𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) < ((𝑌 − 𝑋) · 𝐸))) |
252 | 248, 251 | mpbird 247 |
. 2
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹‘𝑡) − (𝐹‘𝑐)) d𝑡) / (𝑌 − 𝑋)) < 𝐸) |
253 | 138, 252 | eqbrtrd 4809 |
1
⊢ ((𝜑 ∧ 𝑋 < 𝑌) → (abs‘((((𝐺‘𝑌) − (𝐺‘𝑋)) / (𝑌 − 𝑋)) − (𝐹‘𝑐))) < 𝐸) |