Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnclem Structured version   Visualization version   GIF version

Theorem ftc1cnnclem 33815
Description: Lemma for ftc1cnnc 33816; cf. ftc1lem4 24022. The stronger assumptions of ftc1cn 24026 are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
ftc1cnnclem.c (𝜑𝑐 ∈ (𝐴(,)𝐵))
ftc1cnnclem.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
ftc1cnnclem.e (𝜑𝐸 ∈ ℝ+)
ftc1cnnclem.r (𝜑𝑅 ∈ ℝ+)
ftc1cnnclem.fc ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
ftc1cnnclem.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1cnnclem.x2 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
ftc1cnnclem.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1cnnclem.y2 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
Assertion
Ref Expression
ftc1cnnclem ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑡,𝐴   𝑥,𝐵,𝑦,𝑧,𝑡   𝑥,𝐹,𝑦,𝑧,𝑡   𝜑,𝑥,𝑦,𝑧,𝑡   𝑦,𝐺,𝑧   𝑥,𝑐,𝑦,𝑧,𝑡   𝑥,𝑋,𝑧,𝑡   𝑦,𝐸,𝑡   𝑦,𝐻   𝑥,𝑌,𝑡   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑐)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑥,𝑧,𝑡,𝑐)   𝐸(𝑥,𝑧,𝑐)   𝐹(𝑐)   𝐺(𝑥,𝑡,𝑐)   𝐻(𝑥,𝑧,𝑡,𝑐)   𝑋(𝑦,𝑐)   𝑌(𝑦,𝑧,𝑐)

Proof of Theorem ftc1cnnclem
StepHypRef Expression
1 ftc1cnnc.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
2 ftc1cnnc.b . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
3 iccssre 12460 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
41, 2, 3syl2anc 573 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5 ftc1cnnclem.x1 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐴[,]𝐵))
64, 5sseldd 3753 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
7 ftc1cnnclem.y1 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐴[,]𝐵))
84, 7sseldd 3753 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
9 ltle 10332 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
106, 8, 9syl2anc 573 . . . . . . . . . . 11 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
1110imp 393 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
12 ftc1cnnc.g . . . . . . . . . . 11 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
13 ftc1cnnc.le . . . . . . . . . . 11 (𝜑𝐴𝐵)
14 ssid 3773 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
1514a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
16 ioossre 12440 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℝ
1716a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
18 ftc1cnnc.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
19 ftc1cnnc.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
20 cncff 22916 . . . . . . . . . . . 12 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
2119, 20syl 17 . . . . . . . . . . 11 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
2212, 1, 2, 13, 15, 17, 18, 21, 5, 7ftc1lem1 24018 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
2311, 22syldan 579 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
241rexrd 10295 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
252rexrd 10295 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ*)
26 elicc1 12424 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
2726biimpa 462 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵))
2827simp2d 1137 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → 𝐴𝑋)
2924, 25, 5, 28syl21anc 1475 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑋)
30 iccleub 12434 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑌 ∈ (𝐴[,]𝐵)) → 𝑌𝐵)
3124, 25, 7, 30syl3anc 1476 . . . . . . . . . . . . . . . 16 (𝜑𝑌𝐵)
32 ioossioo 12471 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑋𝑌𝐵)) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
3324, 25, 29, 31, 32syl22anc 1477 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
3433sselda 3752 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ (𝐴(,)𝐵))
3521ffvelrnda 6504 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
3634, 35syldan 579 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
37 ftc1cnnclem.c . . . . . . . . . . . . . . 15 (𝜑𝑐 ∈ (𝐴(,)𝐵))
3821, 37ffvelrnd 6505 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑐) ∈ ℂ)
3938adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑐) ∈ ℂ)
4036, 39npcand 10602 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) = (𝐹𝑡))
4140itgeq2dv 23768 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
4236, 39subcld 10598 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ ℂ)
43 ioombl 23553 . . . . . . . . . . . . . . 15 (𝑋(,)𝑌) ∈ dom vol
4443a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
45 fvexd 6346 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ V)
4621feqmptd 6393 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)))
4746, 18eqeltrrd 2851 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)) ∈ 𝐿1)
4833, 44, 45, 47iblss 23791 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
49 fconstmpt 5302 . . . . . . . . . . . . . 14 ((𝑋(,)𝑌) × {(𝐹𝑐)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐))
50 mblvol 23518 . . . . . . . . . . . . . . . . 17 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
5143, 50ax-mp 5 . . . . . . . . . . . . . . . 16 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
52 ioossicc 12464 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
5352a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
54 iccmbl 23554 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
556, 8, 54syl2anc 573 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
56 mblss 23519 . . . . . . . . . . . . . . . . . 18 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
5755, 56syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
58 mblvol 23518 . . . . . . . . . . . . . . . . . . 19 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
5955, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
60 iccvolcl 23555 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
616, 8, 60syl2anc 573 . . . . . . . . . . . . . . . . . 18 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6259, 61eqeltrrd 2851 . . . . . . . . . . . . . . . . 17 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
63 ovolsscl 23474 . . . . . . . . . . . . . . . . 17 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6453, 57, 62, 63syl3anc 1476 . . . . . . . . . . . . . . . 16 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6551, 64syl5eqel 2854 . . . . . . . . . . . . . . 15 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
66 iblconst 23804 . . . . . . . . . . . . . . 15 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
6744, 65, 38, 66syl3anc 1476 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
6849, 67syl5eqelr 2855 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ 𝐿1)
69 eqid 2771 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7069subcn 22889 . . . . . . . . . . . . . . . 16 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
7170a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
7221, 33feqresmpt 6394 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
73 rescncf 22920 . . . . . . . . . . . . . . . . 17 ((𝑋(,)𝑌) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
7433, 19, 73sylc 65 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7572, 74eqeltrrd 2851 . . . . . . . . . . . . . . 15 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
76 ioossre 12440 . . . . . . . . . . . . . . . . . 18 (𝑋(,)𝑌) ⊆ ℝ
77 ax-resscn 10199 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℂ
7876, 77sstri 3761 . . . . . . . . . . . . . . . . 17 (𝑋(,)𝑌) ⊆ ℂ
79 ssid 3773 . . . . . . . . . . . . . . . . 17 ℂ ⊆ ℂ
80 cncfmptc 22934 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8178, 79, 80mp3an23 1564 . . . . . . . . . . . . . . . 16 ((𝐹𝑐) ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8238, 81syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
8369, 71, 75, 82cncfmpt2f 22937 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
84 cnmbf 23646 . . . . . . . . . . . . . 14 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
8543, 83, 84sylancr 575 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
8636, 48, 39, 68, 85iblsubnc 33803 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ 𝐿1)
8740mpteq2dva 4879 . . . . . . . . . . . . . 14 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
8887, 72eqtr4d 2808 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝐹 ↾ (𝑋(,)𝑌)))
89 iblmbf 23754 . . . . . . . . . . . . . . 15 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
9018, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ MblFn)
91 mbfres 23631 . . . . . . . . . . . . . 14 ((𝐹 ∈ MblFn ∧ (𝑋(,)𝑌) ∈ dom vol) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
9290, 43, 91sylancl 574 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
9388, 92eqeltrd 2850 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) ∈ MblFn)
9442, 86, 39, 68, 93itgaddnc 33802 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
9541, 94eqtr3d 2807 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
9695adantr 466 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
97 itgconst 23805 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
9844, 65, 38, 97syl3anc 1476 . . . . . . . . . . . 12 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
9998adantr 466 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
1006adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
1018adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
102 ovolioo 23556 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
103100, 101, 11, 102syl3anc 1476 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
10451, 103syl5eq 2817 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
105104oveq2d 6812 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝑐) · (𝑌𝑋)))
10699, 105eqtrd 2805 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (𝑌𝑋)))
107106oveq2d 6812 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
10823, 96, 1073eqtrd 2809 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
109108oveq1d 6811 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)))
110 ovexd 6829 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ V)
111110, 86itgcl 23770 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
112111adantr 466 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
11338adantr 466 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐹𝑐) ∈ ℂ)
1148, 6resubcld 10664 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℝ)
115114recnd 10274 . . . . . . . . . 10 (𝜑 → (𝑌𝑋) ∈ ℂ)
116115adantr 466 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
117113, 116mulcld 10266 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (𝑌𝑋)) ∈ ℂ)
1186, 8posdifd 10820 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
119118biimpa 462 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
120119gt0ne0d 10798 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
121112, 117, 116, 120divdird 11045 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))))
122113, 116, 120divcan4d 11013 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝑐))
123122oveq2d 6812 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
124109, 121, 1233eqtrd 2809 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
125124oveq1d 6811 . . . . 5 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐)) = (((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)) − (𝐹𝑐)))
126112, 116, 120divcld 11007 . . . . . 6 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
127126, 113pncand 10599 . . . . 5 ((𝜑𝑋 < 𝑌) → (((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)) − (𝐹𝑐)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)))
128125, 127eqtrd 2805 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)))
129128fveq2d 6337 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))))
130112, 116, 120absdivd 14402 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))))
131114adantr 466 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
132 0re 10246 . . . . . . 7 0 ∈ ℝ
133 ltle 10332 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
134132, 131, 133sylancr 575 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
135119, 134mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
136131, 135absidd 14369 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
137136oveq2d 6812 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
138129, 130, 1373eqtrd 2809 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
139112abscld 14383 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ)
14042abscld 14383 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ)
141 cncfss 22922 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
14277, 79, 141mp2an 672 . . . . . . . . . . 11 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
143 abscncf 22924 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
144142, 143sselii 3749 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℂ)
145144a1i 11 . . . . . . . . 9 (𝜑 → abs ∈ (ℂ–cn→ℂ))
146145, 83cncfmpt1f 22936 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
147 cnmbf 23646 . . . . . . . 8 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
14843, 146, 147sylancr 575 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
149110, 86, 148iblabsnc 33806 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ 𝐿1)
150140, 149itgrecl 23784 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
151150adantr 466 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
152 ftc1cnnclem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
153152rpred 12075 . . . . . 6 (𝜑𝐸 ∈ ℝ)
154114, 153remulcld 10276 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
155154adantr 466 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
156111cjcld 14144 . . . . . . . . 9 (𝜑 → (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ)
157 cncfmptc 22934 . . . . . . . . . 10 (((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
15878, 79, 157mp3an23 1564 . . . . . . . . 9 ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
159156, 158syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
160 nfcv 2913 . . . . . . . . . 10 𝑥((𝐹𝑡) − (𝐹𝑐))
161 nfcsb1v 3698 . . . . . . . . . 10 𝑡𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))
162 csbeq1a 3691 . . . . . . . . . 10 (𝑡 = 𝑥 → ((𝐹𝑡) − (𝐹𝑐)) = 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
163160, 161, 162cbvmpt 4884 . . . . . . . . 9 (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
164163, 83syl5eqelr 2855 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
165159, 164mulcncf 23434 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
166 cnmbf 23646 . . . . . . 7 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16743, 165, 166sylancr 575 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16842, 86, 148, 167itgabsnc 33811 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
169168adantr 466 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
170 simpr 471 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
171153adantr 466 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
172 fconstmpt 5302 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
173152rpcnd 12077 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
174 iblconst 23804 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
17544, 65, 173, 174syl3anc 1476 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
176172, 175syl5eqelr 2855 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
177 cncfmptc 22934 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
17878, 79, 177mp3an23 1564 . . . . . . . . . . . 12 (𝐸 ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
179173, 178syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
18069, 71, 179, 146cncfmpt2f 22937 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
181 cnmbf 23646 . . . . . . . . . 10 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
18243, 180, 181sylancr 575 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
183171, 176, 140, 149, 182iblsubnc 33803 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
184183adantr 466 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
185 ftc1cnnclem.fc . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
186185ralrimiva 3115 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
187186adantr 466 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
18816, 37sseldi 3750 . . . . . . . . . . . . . 14 (𝜑𝑐 ∈ ℝ)
189 ftc1cnnclem.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
190189rpred 12075 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
191188, 190resubcld 10664 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) ∈ ℝ)
192191adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) ∈ ℝ)
1936adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
194 elioore 12410 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑋(,)𝑌) → 𝑡 ∈ ℝ)
195194adantl 467 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
196 ftc1cnnclem.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
1976, 188, 190absdifltd 14380 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅))))
198196, 197mpbid 222 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅)))
199198simpld 482 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) < 𝑋)
200199adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑋)
201 eliooord 12438 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
202201adantl 467 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
203202simpld 482 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
204192, 193, 195, 200, 203lttrd 10404 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑡)
2058adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
206188, 190readdcld 10275 . . . . . . . . . . . . 13 (𝜑 → (𝑐 + 𝑅) ∈ ℝ)
207206adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 + 𝑅) ∈ ℝ)
208202simprd 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
209 ftc1cnnclem.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
2108, 188, 190absdifltd 14380 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅))))
211209, 210mpbid 222 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅)))
212211simprd 483 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝑐 + 𝑅))
213212adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝑐 + 𝑅))
214195, 205, 207, 208, 213lttrd 10404 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝑐 + 𝑅))
215188adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑐 ∈ ℝ)
216190adantr 466 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
217195, 215, 216absdifltd 14380 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑡𝑡 < (𝑐 + 𝑅))))
218204, 214, 217mpbir2and 692 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝑐)) < 𝑅)
219 fvoveq1 6819 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝑐)) = (abs‘(𝑡𝑐)))
220219breq1d 4797 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝑐)) < 𝑅 ↔ (abs‘(𝑡𝑐)) < 𝑅))
221 fveq2 6333 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
222221fvoveq1d 6818 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘((𝐹𝑦) − (𝐹𝑐))) = (abs‘((𝐹𝑡) − (𝐹𝑐))))
223222breq1d 4797 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸 ↔ (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸))
224220, 223imbi12d 333 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) ↔ ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
225224rspcv 3456 . . . . . . . . . 10 (𝑡 ∈ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) → ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
22634, 187, 218, 225syl3c 66 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)
227 difrp 12071 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
228140, 171, 227syl2anc 573 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
229226, 228mpbid 222 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
230229adantlr 694 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
231180adantr 466 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
232170, 184, 230, 231itggt0cn 33814 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡)
233171, 176, 140, 149, 182itgsubnc 33804 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
234233adantr 466 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
235 itgconst 23805 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
23644, 65, 173, 235syl3anc 1476 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
237236adantr 466 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
238104oveq2d 6812 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
239173, 115mulcomd 10267 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
240239adantr 466 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
241237, 238, 2403eqtrd 2809 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
242241oveq1d 6811 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
243234, 242eqtrd 2805 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
244232, 243breqtrd 4813 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
245150, 154posdifd 10820 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)))
246245biimpar 463 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
247244, 246syldan 579 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
248139, 151, 155, 169, 247lelttrd 10401 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸))
249153adantr 466 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
250 ltdivmul 11104 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
251139, 249, 131, 119, 250syl112anc 1480 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
252248, 251mpbird 247 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸)
253138, 252eqbrtrd 4809 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  csb 3682  cdif 3720  wss 3723  {csn 4317   class class class wbr 4787  cmpt 4864   × cxp 5248  dom cdm 5250  cres 5252  wf 6026  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142   + caddc 10145   · cmul 10147  *cxr 10279   < clt 10280  cle 10281  cmin 10472   / cdiv 10890  +crp 12035  (,)cioo 12380  [,]cicc 12383  ccj 14044  abscabs 14182  TopOpenctopn 16290  fldccnfld 19961   Cn ccn 21249   ×t ctx 21584  cnccncf 22899  vol*covol 23450  volcvol 23451  MblFncmbf 23602  𝐿1cibl 23605  citg 23606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-ofr 7049  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-acn 8972  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cn 21252  df-cnp 21253  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-itg 23611  df-0p 23657
This theorem is referenced by:  ftc1cnnc  33816
  Copyright terms: Public domain W3C validator