MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1cn Structured version   Visualization version   GIF version

Theorem ftc1cn 23997
Description: Strengthen the assumptions of ftc1 23996 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1cn.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cn.a (𝜑𝐴 ∈ ℝ)
ftc1cn.b (𝜑𝐵 ∈ ℝ)
ftc1cn.le (𝜑𝐴𝐵)
ftc1cn.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cn.i (𝜑𝐹 ∈ 𝐿1)
Assertion
Ref Expression
ftc1cn (𝜑 → (ℝ D 𝐺) = 𝐹)
Distinct variable groups:   𝑥,𝑡,𝐴   𝑡,𝐵,𝑥   𝑡,𝐹,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvf 23862 . . . . 5 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
21a1i 11 . . . 4 (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ)
3 ffun 6201 . . . 4 ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ → Fun (ℝ D 𝐺))
42, 3syl 17 . . 3 (𝜑 → Fun (ℝ D 𝐺))
5 ax-resscn 10177 . . . . . . 7 ℝ ⊆ ℂ
65a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
7 ftc1cn.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
8 ftc1cn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 ftc1cn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
10 ftc1cn.le . . . . . . 7 (𝜑𝐴𝐵)
11 ssid 3757 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
1211a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
13 ioossre 12420 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1413a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
15 ftc1cn.i . . . . . . 7 (𝜑𝐹 ∈ 𝐿1)
16 ftc1cn.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
17 cncff 22889 . . . . . . . 8 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1816, 17syl 17 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
197, 8, 9, 10, 12, 14, 15, 18ftc1lem2 23990 . . . . . 6 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
20 iccssre 12440 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
218, 9, 20syl2anc 696 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
22 eqid 2752 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2322tgioo2 22799 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
246, 19, 21, 23, 22dvbssntr 23855 . . . . 5 (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
25 iccntr 22817 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
268, 9, 25syl2anc 696 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2724, 26sseqtrd 3774 . . . 4 (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵))
288adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
299adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
3010adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴𝐵)
3111a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
3213a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ℝ)
3315adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ 𝐿1)
34 simpr 479 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
3513, 5sstri 3745 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
36 ssid 3757 . . . . . . . . . . . 12 ℂ ⊆ ℂ
37 eqid 2752 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
3822cnfldtop 22780 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) ∈ Top
3922cnfldtopon 22779 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4039toponunii 20915 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
4140restid 16288 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
4238, 41ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
4342eqcomi 2761 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4422, 37, 43cncfcn 22905 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
4535, 36, 44mp2an 710 . . . . . . . . . . 11 ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
4616, 45syl6eleq 2841 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
4746adantr 472 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
4835a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
49 resttopon 21159 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
5039, 48, 49sylancr 698 . . . . . . . . . . . 12 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
51 toponuni 20913 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
5250, 51syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
5352eleq2d 2817 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))))
5453biimpa 502 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
55 eqid 2752 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5655cncnpi 21276 . . . . . . . . 9 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
5747, 54, 56syl2anc 696 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
587, 28, 29, 30, 31, 32, 33, 34, 57, 23, 37, 22ftc1 23996 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦(ℝ D 𝐺)(𝐹𝑦))
59 vex 3335 . . . . . . . 8 𝑦 ∈ V
60 fvex 6354 . . . . . . . 8 (𝐹𝑦) ∈ V
6159, 60breldm 5476 . . . . . . 7 (𝑦(ℝ D 𝐺)(𝐹𝑦) → 𝑦 ∈ dom (ℝ D 𝐺))
6258, 61syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom (ℝ D 𝐺))
6362ex 449 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) → 𝑦 ∈ dom (ℝ D 𝐺)))
6463ssrdv 3742 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ dom (ℝ D 𝐺))
6527, 64eqssd 3753 . . 3 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
66 df-fn 6044 . . 3 ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)))
674, 65, 66sylanbrc 701 . 2 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
68 ffn 6198 . . 3 (𝐹:(𝐴(,)𝐵)⟶ℂ → 𝐹 Fn (𝐴(,)𝐵))
6918, 68syl 17 . 2 (𝜑𝐹 Fn (𝐴(,)𝐵))
704adantr 472 . . 3 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺))
71 funbrfv 6387 . . 3 (Fun (ℝ D 𝐺) → (𝑦(ℝ D 𝐺)(𝐹𝑦) → ((ℝ D 𝐺)‘𝑦) = (𝐹𝑦)))
7270, 58, 71sylc 65 . 2 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) = (𝐹𝑦))
7367, 69, 72eqfnfvd 6469 1 (𝜑 → (ℝ D 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  wss 3707   cuni 4580   class class class wbr 4796  cmpt 4873  dom cdm 5258  ran crn 5259  Fun wfun 6035   Fn wfn 6036  wf 6037  cfv 6041  (class class class)co 6805  cc 10118  cr 10119  cle 10259  (,)cioo 12360  [,]cicc 12363  t crest 16275  TopOpenctopn 16276  topGenctg 16292  fldccnfld 19940  Topctop 20892  TopOnctopon 20909  intcnt 21015   Cn ccn 21222   CnP ccnp 21223  cnccncf 22872  𝐿1cibl 23577  citg 23578   D cdv 23818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cc 9441  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-disj 4765  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-ofr 7055  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-omul 7726  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-acn 8950  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ioc 12365  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-rlim 14411  df-sum 14608  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-lp 21134  df-perf 21135  df-cn 21225  df-cnp 21226  df-haus 21313  df-cmp 21384  df-tx 21559  df-hmeo 21752  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-xms 22318  df-ms 22319  df-tms 22320  df-cncf 22874  df-ovol 23425  df-vol 23426  df-mbf 23579  df-itg1 23580  df-itg2 23581  df-ibl 23582  df-itg 23583  df-0p 23628  df-limc 23821  df-dv 23822
This theorem is referenced by:  ftc2  23998  itgsubstlem  24002
  Copyright terms: Public domain W3C validator