Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem7 Structured version   Visualization version   GIF version

Theorem ftc1anclem7 33621
Description: Lemma for ftc1anc 33623. (Contributed by Brendan Leahy, 13-May-2018.)
Hypotheses
Ref Expression
ftc1anc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1anc.a (𝜑𝐴 ∈ ℝ)
ftc1anc.b (𝜑𝐵 ∈ ℝ)
ftc1anc.le (𝜑𝐴𝐵)
ftc1anc.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1anc.d (𝜑𝐷 ⊆ ℝ)
ftc1anc.i (𝜑𝐹 ∈ 𝐿1)
ftc1anc.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1anclem7 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2)))
Distinct variable groups:   𝑓,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦,𝐴   𝐵,𝑓,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦   𝐷,𝑓,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦   𝑓,𝐹,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦   𝜑,𝑓,𝑔,𝑟,𝑡,𝑢,𝑤,𝑥,𝑦   𝑓,𝐺,𝑔,𝑟,𝑢,𝑤,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1anclem7
StepHypRef Expression
1 i1ff 23488 . . . . . . . . . . 11 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
21ffvelrnda 6399 . . . . . . . . . 10 ((𝑓 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
32recnd 10106 . . . . . . . . 9 ((𝑓 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℂ)
4 ax-icn 10033 . . . . . . . . . 10 i ∈ ℂ
5 i1ff 23488 . . . . . . . . . . . 12 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
65ffvelrnda 6399 . . . . . . . . . . 11 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
76recnd 10106 . . . . . . . . . 10 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℂ)
8 mulcl 10058 . . . . . . . . . 10 ((i ∈ ℂ ∧ (𝑔𝑥) ∈ ℂ) → (i · (𝑔𝑥)) ∈ ℂ)
94, 7, 8sylancr 696 . . . . . . . . 9 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (i · (𝑔𝑥)) ∈ ℂ)
10 addcl 10056 . . . . . . . . 9 (((𝑓𝑥) ∈ ℂ ∧ (i · (𝑔𝑥)) ∈ ℂ) → ((𝑓𝑥) + (i · (𝑔𝑥))) ∈ ℂ)
113, 9, 10syl2an 493 . . . . . . . 8 (((𝑓 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑥 ∈ ℝ)) → ((𝑓𝑥) + (i · (𝑔𝑥))) ∈ ℂ)
1211anandirs 891 . . . . . . 7 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑥) + (i · (𝑔𝑥))) ∈ ℂ)
13 reex 10065 . . . . . . . . 9 ℝ ∈ V
1413a1i 11 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ℝ ∈ V)
152adantlr 751 . . . . . . . 8 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
16 ovexd 6720 . . . . . . . 8 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (i · (𝑔𝑥)) ∈ V)
171feqmptd 6288 . . . . . . . . 9 (𝑓 ∈ dom ∫1𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
1817adantr 480 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
1913a1i 11 . . . . . . . . . 10 (𝑔 ∈ dom ∫1 → ℝ ∈ V)
204a1i 11 . . . . . . . . . 10 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → i ∈ ℂ)
21 fconstmpt 5197 . . . . . . . . . . 11 (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)
2221a1i 11 . . . . . . . . . 10 (𝑔 ∈ dom ∫1 → (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i))
235feqmptd 6288 . . . . . . . . . 10 (𝑔 ∈ dom ∫1𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
2419, 20, 6, 22, 23offval2 6956 . . . . . . . . 9 (𝑔 ∈ dom ∫1 → ((ℝ × {i}) ∘𝑓 · 𝑔) = (𝑥 ∈ ℝ ↦ (i · (𝑔𝑥))))
2524adantl 481 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((ℝ × {i}) ∘𝑓 · 𝑔) = (𝑥 ∈ ℝ ↦ (i · (𝑔𝑥))))
2614, 15, 16, 18, 25offval2 6956 . . . . . . 7 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑓𝑓 + ((ℝ × {i}) ∘𝑓 · 𝑔)) = (𝑥 ∈ ℝ ↦ ((𝑓𝑥) + (i · (𝑔𝑥)))))
27 absf 14121 . . . . . . . . 9 abs:ℂ⟶ℝ
2827a1i 11 . . . . . . . 8 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → abs:ℂ⟶ℝ)
2928feqmptd 6288 . . . . . . 7 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → abs = (𝑡 ∈ ℂ ↦ (abs‘𝑡)))
30 fveq2 6229 . . . . . . 7 (𝑡 = ((𝑓𝑥) + (i · (𝑔𝑥))) → (abs‘𝑡) = (abs‘((𝑓𝑥) + (i · (𝑔𝑥)))))
3112, 26, 29, 30fmptco 6436 . . . . . 6 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ (𝑓𝑓 + ((ℝ × {i}) ∘𝑓 · 𝑔))) = (𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥))))))
32 ftc1anclem3 33617 . . . . . 6 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs ∘ (𝑓𝑓 + ((ℝ × {i}) ∘𝑓 · 𝑔))) ∈ dom ∫1)
3331, 32eqeltrrd 2731 . . . . 5 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥))))) ∈ dom ∫1)
34 ioombl 23379 . . . . 5 (𝑢(,)𝑤) ∈ dom vol
35 fveq2 6229 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝑓𝑥) = (𝑓𝑡))
36 fveq2 6229 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → (𝑔𝑥) = (𝑔𝑡))
3736oveq2d 6706 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (i · (𝑔𝑥)) = (i · (𝑔𝑡)))
3835, 37oveq12d 6708 . . . . . . . . . . 11 (𝑥 = 𝑡 → ((𝑓𝑥) + (i · (𝑔𝑥))) = ((𝑓𝑡) + (i · (𝑔𝑡))))
3938fveq2d 6233 . . . . . . . . . 10 (𝑥 = 𝑡 → (abs‘((𝑓𝑥) + (i · (𝑔𝑥)))) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
40 eqid 2651 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥))))) = (𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥)))))
41 fvex 6239 . . . . . . . . . 10 (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ V
4239, 40, 41fvmpt 6321 . . . . . . . . 9 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥)))))‘𝑡) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
4342eqcomd 2657 . . . . . . . 8 (𝑡 ∈ ℝ → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) = ((𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥)))))‘𝑡))
4443ifeq1d 4137 . . . . . . 7 (𝑡 ∈ ℝ → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = if(𝑡 ∈ (𝑢(,)𝑤), ((𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥)))))‘𝑡), 0))
4544mpteq2ia 4773 . . . . . 6 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥)))))‘𝑡), 0))
4645i1fres 23517 . . . . 5 (((𝑥 ∈ ℝ ↦ (abs‘((𝑓𝑥) + (i · (𝑔𝑥))))) ∈ dom ∫1 ∧ (𝑢(,)𝑤) ∈ dom vol) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ dom ∫1)
4733, 34, 46sylancl 695 . . . 4 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ dom ∫1)
48 breq2 4689 . . . . . . 7 ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) → (0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ↔ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
49 breq2 4689 . . . . . . 7 (0 = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
50 elioore 12243 . . . . . . . 8 (𝑡 ∈ (𝑢(,)𝑤) → 𝑡 ∈ ℝ)
51 eleq1 2718 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝑥 ∈ ℝ ↔ 𝑡 ∈ ℝ))
5251anbi2d 740 . . . . . . . . . . 11 (𝑥 = 𝑡 → (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ↔ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)))
5338eleq1d 2715 . . . . . . . . . . 11 (𝑥 = 𝑡 → (((𝑓𝑥) + (i · (𝑔𝑥))) ∈ ℂ ↔ ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ))
5452, 53imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝑡 → ((((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑥) + (i · (𝑔𝑥))) ∈ ℂ) ↔ (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)))
5554, 12chvarv 2299 . . . . . . . . 9 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
5655absge0d 14227 . . . . . . . 8 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
5750, 56sylan2 490 . . . . . . 7 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
58 0le0 11148 . . . . . . . 8 0 ≤ 0
5958a1i 11 . . . . . . 7 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ 0)
6048, 49, 57, 59ifbothda 4156 . . . . . 6 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))
6160ralrimivw 2996 . . . . 5 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))
62 ax-resscn 10031 . . . . . . . 8 ℝ ⊆ ℂ
6362a1i 11 . . . . . . 7 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ℝ ⊆ ℂ)
64 c0ex 10072 . . . . . . . . . 10 0 ∈ V
6541, 64ifex 4189 . . . . . . . . 9 if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ V
66 eqid 2651 . . . . . . . . 9 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))
6765, 66fnmpti 6060 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) Fn ℝ
6867a1i 11 . . . . . . 7 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) Fn ℝ)
6963, 680pledm 23485 . . . . . 6 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ↔ (ℝ × {0}) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))))
7064a1i 11 . . . . . . 7 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ∈ V)
7165a1i 11 . . . . . . 7 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ V)
72 fconstmpt 5197 . . . . . . . 8 (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)
7372a1i 11 . . . . . . 7 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0))
74 eqidd 2652 . . . . . . 7 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
7514, 70, 71, 73, 74ofrfval2 6957 . . . . . 6 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((ℝ × {0}) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
7669, 75bitrd 268 . . . . 5 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
7761, 76mpbird 247 . . . 4 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)))
78 itg2itg1 23548 . . . . 5 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ dom ∫1 ∧ 0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) = (∫1‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))))
79 itg1cl 23497 . . . . . 6 ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ dom ∫1 → (∫1‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
8079adantr 480 . . . . 5 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ dom ∫1 ∧ 0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) → (∫1‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
8178, 80eqeltrd 2730 . . . 4 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∈ dom ∫1 ∧ 0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
8247, 77, 81syl2anc 694 . . 3 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
8382ad6antlr 779 . 2 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
84 simplll 813 . . . . 5 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)))
85 ftc1anc.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℝ)
8685rexrd 10127 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ*)
87 ftc1anc.b . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ ℝ)
8887rexrd 10127 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ*)
8986, 88jca 553 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
90 df-icc 12220 . . . . . . . . . . . . . . . . . . . . . 22 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑡 ∈ ℝ* ∣ (𝑥𝑡𝑡𝑦)})
9190elixx3g 12226 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑢 ∈ ℝ*) ∧ (𝐴𝑢𝑢𝐵)))
9291simprbi 479 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ (𝐴[,]𝐵) → (𝐴𝑢𝑢𝐵))
9392simpld 474 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (𝐴[,]𝐵) → 𝐴𝑢)
9490elixx3g 12226 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝐴𝑤𝑤𝐵)))
9594simprbi 479 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝐴[,]𝐵) → (𝐴𝑤𝑤𝐵))
9695simprd 478 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝐴[,]𝐵) → 𝑤𝐵)
9793, 96anim12i 589 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴𝑢𝑤𝐵))
98 ioossioo 12303 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑢𝑤𝐵)) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵))
9989, 97, 98syl2an 493 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵))
100 ftc1anc.s . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
101100adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ 𝐷)
10299, 101sstrd 3646 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ 𝐷)
1031023adantr3 1242 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (𝑢(,)𝑤) ⊆ 𝐷)
104103sselda 3636 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡𝐷)
105 ftc1anc.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐷⟶ℂ)
106105ffvelrnda 6399 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
107106adantlr 751 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
108104, 107syldan 486 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹𝑡) ∈ ℂ)
109108adantllr 755 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹𝑡) ∈ ℂ)
11055adantll 750 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
11150, 110sylan2 490 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
112111adantlr 751 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
113109, 112subcld 10430 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
114113abscld 14219 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ)
115114rexrd 10127 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ*)
116113absge0d 14227 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
117 elxrge0 12319 . . . . . . . . 9 ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,]+∞) ↔ ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
118115, 116, 117sylanbrc 699 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,]+∞))
119 0e0iccpnf 12321 . . . . . . . . 9 0 ∈ (0[,]+∞)
120119a1i 11 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈ (0[,]+∞))
121118, 120ifclda 4153 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ (0[,]+∞))
122121adantr 480 . . . . . 6 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ (0[,]+∞))
123 eqid 2651 . . . . . 6 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))
124122, 123fmptd 6425 . . . . 5 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞))
12584, 124sylan 487 . . . 4 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞))
126 rpre 11877 . . . . . 6 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
127126rehalfcld 11317 . . . . 5 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
128127ad2antlr 763 . . . 4 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (𝑦 / 2) ∈ ℝ)
129 simpll 805 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)))
130102sselda 3636 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡𝐷)
131130adantllr 755 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡𝐷)
132106adantlr 751 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
133 ftc1anc.d . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐷 ⊆ ℝ)
134133sselda 3636 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡𝐷) → 𝑡 ∈ ℝ)
135134adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → 𝑡 ∈ ℝ)
136135, 110syldan 486 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ)
137132, 136subcld 10430 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → ((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
138137abscld 14219 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ)
139138rexrd 10127 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ*)
140139adantlr 751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ*)
141131, 140syldan 486 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ*)
142137absge0d 14227 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
143142adantlr 751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡𝐷) → 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
144131, 143syldan 486 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
145141, 144, 117sylanbrc 699 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,]+∞))
146119a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈ (0[,]+∞))
147145, 146ifclda 4153 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ (0[,]+∞))
148147adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ (0[,]+∞))
149148, 123fmptd 6425 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞))
150 itg2cl 23544 . . . . . . . . . 10 ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ*)
151149, 150syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ*)
152129, 151sylan 487 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ*)
153 0cnd 10071 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ ℂ)
154106, 153ifclda 4153 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
155 subcl 10318 . . . . . . . . . . . . . . . 16 ((if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ ∧ ((𝑓𝑡) + (i · (𝑔𝑡))) ∈ ℂ) → (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
156154, 55, 155syl2an 493 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
157156anassrs 681 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℂ)
158157abscld 14219 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ)
159158rexrd 10127 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ*)
160157absge0d 14227 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
161 elxrge0 12319 . . . . . . . . . . . 12 ((abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,]+∞) ↔ ((abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ ℝ* ∧ 0 ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
162159, 160, 161sylanbrc 699 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ (0[,]+∞))
163 eqid 2651 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
164162, 163fmptd 6425 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))):ℝ⟶(0[,]+∞))
165 itg2cl 23544 . . . . . . . . . 10 ((𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))):ℝ⟶(0[,]+∞) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) ∈ ℝ*)
166164, 165syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) ∈ ℝ*)
167166ad3antrrr 766 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) ∈ ℝ*)
168 rphalfcl 11896 . . . . . . . . . 10 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
169168rpxrd 11911 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ*)
170169ad2antlr 763 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑦 / 2) ∈ ℝ*)
171164adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))):ℝ⟶(0[,]+∞))
172 breq1 4688 . . . . . . . . . . . . 13 ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) → ((abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
173 breq1 4688 . . . . . . . . . . . . 13 (0 = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) → (0 ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
174138leidd 10632 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
175 iftrue 4125 . . . . . . . . . . . . . . . . . . . 20 (𝑡𝐷 → if(𝑡𝐷, (𝐹𝑡), 0) = (𝐹𝑡))
176175oveq1d 6705 . . . . . . . . . . . . . . . . . . 19 (𝑡𝐷 → (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = ((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
177176fveq2d 6233 . . . . . . . . . . . . . . . . . 18 (𝑡𝐷 → (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) = (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
178177adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) = (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
179174, 178breqtrrd 4713 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
180179adantlr 751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡𝐷) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
181131, 180syldan 486 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
182181adantlr 751 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
183160adantlr 751 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
184183adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
185172, 173, 182, 184ifbothda 4156 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
186185ralrimiva 2995 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
18713a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
188 fvex 6239 . . . . . . . . . . . . . . 15 (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ V
189188, 64ifex 4189 . . . . . . . . . . . . . 14 if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ V
190189a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ∈ V)
191 fvexd 6241 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ℝ) → (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))) ∈ V)
192 eqidd 2652 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))
193 eqidd 2652 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
194187, 190, 191, 192, 193ofrfval2 6957 . . . . . . . . . . . 12 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
195194ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0) ≤ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
196186, 195mpbird 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
197 itg2le 23551 . . . . . . . . . 10 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
198149, 171, 196, 197syl3anc 1366 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
199129, 198sylan 487 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
200 simpllr 815 . . . . . . . 8 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2))
201152, 167, 170, 199, 200xrlelttrd 12029 . . . . . . 7 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < (𝑦 / 2))
202 xrltle 12020 . . . . . . . 8 (((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ* ∧ (𝑦 / 2) ∈ ℝ*) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < (𝑦 / 2) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (𝑦 / 2)))
203152, 170, 202syl2anc 694 . . . . . . 7 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < (𝑦 / 2) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (𝑦 / 2)))
204201, 203mpd 15 . . . . . 6 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (𝑦 / 2))
205204adantllr 755 . . . . 5 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (𝑦 / 2))
2062053adantr3 1242 . . . 4 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (𝑦 / 2))
207 itg2lecl 23550 . . . 4 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑦 / 2) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ≤ (𝑦 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ)
208125, 128, 206, 207syl3anc 1366 . . 3 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ)
209208adantr 480 . 2 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) ∈ ℝ)
210127ad3antlr 767 . 2 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (𝑦 / 2) ∈ ℝ)
21182adantr 480 . . . . . . . 8 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
212 2rp 11875 . . . . . . . . 9 2 ∈ ℝ+
213 imassrn 5512 . . . . . . . . . . . . . . . 16 (abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ran abs
214 frn 6091 . . . . . . . . . . . . . . . . 17 (abs:ℂ⟶ℝ → ran abs ⊆ ℝ)
21527, 214ax-mp 5 . . . . . . . . . . . . . . . 16 ran abs ⊆ ℝ
216213, 215sstri 3645 . . . . . . . . . . . . . . 15 (abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ
217216a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ)
218 frn 6091 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℝ⟶ℝ → ran 𝑓 ⊆ ℝ)
2191, 218syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ran 𝑓 ⊆ ℝ)
220219adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ran 𝑓 ⊆ ℝ)
221 frn 6091 . . . . . . . . . . . . . . . . . . . 20 (𝑔:ℝ⟶ℝ → ran 𝑔 ⊆ ℝ)
2225, 221syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑔 ∈ dom ∫1 → ran 𝑔 ⊆ ℝ)
223222adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ran 𝑔 ⊆ ℝ)
224220, 223unssd 3822 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℝ)
225224, 62syl6ss 3648 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ)
226 i1f0rn 23494 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → 0 ∈ ran 𝑓)
227 elun1 3813 . . . . . . . . . . . . . . . . . 18 (0 ∈ ran 𝑓 → 0 ∈ (ran 𝑓 ∪ ran 𝑔))
228226, 227syl 17 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 → 0 ∈ (ran 𝑓 ∪ ran 𝑔))
229228adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 0 ∈ (ran 𝑓 ∪ ran 𝑔))
230 ffn 6083 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
23127, 230ax-mp 5 . . . . . . . . . . . . . . . . 17 abs Fn ℂ
232 fnfvima 6536 . . . . . . . . . . . . . . . . 17 ((abs Fn ℂ ∧ (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ 0 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
233231, 232mp3an1 1451 . . . . . . . . . . . . . . . 16 (((ran 𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ 0 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
234225, 229, 233syl2anc 694 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
235 ne0i 3954 . . . . . . . . . . . . . . 15 ((abs‘0) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅)
236234, 235syl 17 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅)
237 ffun 6086 . . . . . . . . . . . . . . . . 17 (abs:ℂ⟶ℝ → Fun abs)
23827, 237ax-mp 5 . . . . . . . . . . . . . . . 16 Fun abs
239 i1frn 23489 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 → ran 𝑓 ∈ Fin)
240 i1frn 23489 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ dom ∫1 → ran 𝑔 ∈ Fin)
241 unfi 8268 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ran 𝑔 ∈ Fin) → (ran 𝑓 ∪ ran 𝑔) ∈ Fin)
242239, 240, 241syl2an 493 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (ran 𝑓 ∪ ran 𝑔) ∈ Fin)
243 imafi 8300 . . . . . . . . . . . . . . . 16 ((Fun abs ∧ (ran 𝑓 ∪ ran 𝑔) ∈ Fin) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ∈ Fin)
244238, 242, 243sylancr 696 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (abs “ (ran 𝑓 ∪ ran 𝑔)) ∈ Fin)
245 fimaxre2 11007 . . . . . . . . . . . . . . 15 (((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥)
246216, 244, 245sylancr 696 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥)
247 suprcl 11021 . . . . . . . . . . . . . 14 (((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ)
248217, 236, 246, 247syl3anc 1366 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ)
249248adantr 480 . . . . . . . . . . . 12 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑟 ∈ (ran 𝑓 ∪ ran 𝑔) ∧ 𝑟 ≠ 0)) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ)
250 0red 10079 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑟 ∈ (ran 𝑓 ∪ ran 𝑔) ∧ 𝑟 ≠ 0)) → 0 ∈ ℝ)
251225sselda 3636 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → 𝑟 ∈ ℂ)
252251abscld 14219 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ∈ ℝ)
253252adantrr 753 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑟 ∈ (ran 𝑓 ∪ ran 𝑔) ∧ 𝑟 ≠ 0)) → (abs‘𝑟) ∈ ℝ)
254 absgt0 14108 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℂ → (𝑟 ≠ 0 ↔ 0 < (abs‘𝑟)))
255251, 254syl 17 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (𝑟 ≠ 0 ↔ 0 < (abs‘𝑟)))
256255biimpa 500 . . . . . . . . . . . . . 14 ((((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) ∧ 𝑟 ≠ 0) → 0 < (abs‘𝑟))
257256anasss 680 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑟 ∈ (ran 𝑓 ∪ ran 𝑔) ∧ 𝑟 ≠ 0)) → 0 < (abs‘𝑟))
258217, 236, 2463jca 1261 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥))
259258adantr 480 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → ((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥))
260 fnfvima 6536 . . . . . . . . . . . . . . . . 17 ((abs Fn ℂ ∧ (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
261231, 260mp3an1 1451 . . . . . . . . . . . . . . . 16 (((ran 𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
262225, 261sylan 487 . . . . . . . . . . . . . . 15 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
263 suprub 11022 . . . . . . . . . . . . . . 15 ((((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥) ∧ (abs‘𝑟) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘𝑟) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
264259, 262, 263syl2anc 694 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘𝑟) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
265264adantrr 753 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑟 ∈ (ran 𝑓 ∪ ran 𝑔) ∧ 𝑟 ≠ 0)) → (abs‘𝑟) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
266250, 253, 249, 257, 265ltletrd 10235 . . . . . . . . . . . 12 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑟 ∈ (ran 𝑓 ∪ ran 𝑔) ∧ 𝑟 ≠ 0)) → 0 < sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
267249, 266elrpd 11907 . . . . . . . . . . 11 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑟 ∈ (ran 𝑓 ∪ ran 𝑔) ∧ 𝑟 ≠ 0)) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ+)
268267rexlimdvaa 3061 . . . . . . . . . 10 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0 → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ+))
269268imp 444 . . . . . . . . 9 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ+)
270 rpmulcl 11893 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ+) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ+)
271212, 269, 270sylancr 696 . . . . . . . 8 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ+)
272211, 271rerpdivcld 11941 . . . . . . 7 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ)
273272adantll 750 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ)
274273adantlr 751 . . . . 5 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ)
275274ad3antrrr 766 . . . 4 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ)
276 simp-4l 823 . . . . . 6 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → 𝜑)
277 iccssre 12293 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
27885, 87, 277syl2anc 694 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
279278, 62syl6ss 3648 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
280279sselda 3636 . . . . . . . . . 10 ((𝜑𝑤 ∈ (𝐴[,]𝐵)) → 𝑤 ∈ ℂ)
281279sselda 3636 . . . . . . . . . 10 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → 𝑢 ∈ ℂ)
282 subcl 10318 . . . . . . . . . 10 ((𝑤 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝑤𝑢) ∈ ℂ)
283280, 281, 282syl2anr 494 . . . . . . . . 9 (((𝜑𝑢 ∈ (𝐴[,]𝐵)) ∧ (𝜑𝑤 ∈ (𝐴[,]𝐵))) → (𝑤𝑢) ∈ ℂ)
284283anandis 890 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑤𝑢) ∈ ℂ)
285284abscld 14219 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (abs‘(𝑤𝑢)) ∈ ℝ)
2862853adantr3 1242 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (abs‘(𝑤𝑢)) ∈ ℝ)
287276, 286sylan 487 . . . . 5 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (abs‘(𝑤𝑢)) ∈ ℝ)
288287adantr 480 . . . 4 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (abs‘(𝑤𝑢)) ∈ ℝ)
289 rpdivcl 11894 . . . . . . . . 9 (((𝑦 / 2) ∈ ℝ+ ∧ (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ+)
290168, 271, 289syl2anr 494 . . . . . . . 8 ((((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ+)
291290rpred 11910 . . . . . . 7 ((((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ)
292291adantlll 754 . . . . . 6 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ)
293292adantllr 755 . . . . 5 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ)
294293ad2antrr 762 . . . 4 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ∈ ℝ)
295278sseld 3635 . . . . . . . . . . 11 (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) → 𝑢 ∈ ℝ))
296278sseld 3635 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (𝐴[,]𝐵) → 𝑤 ∈ ℝ))
297 idd 24 . . . . . . . . . . 11 (𝜑 → (𝑢𝑤𝑢𝑤))
298295, 296, 2973anim123d 1446 . . . . . . . . . 10 (𝜑 → ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)))
299298ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)))
300299imp 444 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤))
30155abscld 14219 . . . . . . . . . . . . . . . . . . 19 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ)
302301rexrd 10127 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ*)
303 elxrge0 12319 . . . . . . . . . . . . . . . . . 18 ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,]+∞) ↔ ((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝑓𝑡) + (i · (𝑔𝑡))))))
304302, 56, 303sylanbrc 699 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,]+∞))
305 ifcl 4163 . . . . . . . . . . . . . . . . 17 (((abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,]+∞))
306304, 119, 305sylancl 695 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ∈ (0[,]+∞))
307306, 66fmptd 6425 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞))
308248recnd 10106 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℂ)
3093082timesd 11313 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) = (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
310248, 248readdcld 10107 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ)
311310rexrd 10127 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ*)
312 abs0 14069 . . . . . . . . . . . . . . . . . . . . . . 23 (abs‘0) = 0
313312, 234syl5eqelr 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 0 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
314 suprub 11022 . . . . . . . . . . . . . . . . . . . . . 22 ((((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥) ∧ 0 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → 0 ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
315258, 313, 314syl2anc 694 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 0 ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
316248, 248, 315, 315addge0d 10641 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → 0 ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
317 elxrge0 12319 . . . . . . . . . . . . . . . . . . . 20 ((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,]+∞) ↔ ((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ* ∧ 0 ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))))
318311, 316, 317sylanbrc 699 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,]+∞))
319309, 318eqeltrd 2730 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,]+∞))
320 ifcl 4163 . . . . . . . . . . . . . . . . . 18 (((2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈ (0[,]+∞))
321319, 119, 320sylancl 695 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈ (0[,]+∞))
322321adantr 480 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈ (0[,]+∞))
323 eqid 2651 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))
324322, 323fmptd 6425 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)):ℝ⟶(0[,]+∞))
3251ffvelrnda 6399 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℝ)
326325recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℂ)
327326abscld 14219 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝑓𝑡)) ∈ ℝ)
3285ffvelrnda 6399 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℝ)
329328recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
330329abscld 14219 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝑔𝑡)) ∈ ℝ)
331 readdcl 10057 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((abs‘(𝑓𝑡)) ∈ ℝ ∧ (abs‘(𝑔𝑡)) ∈ ℝ) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ ℝ)
332327, 330, 331syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ ℝ)
333332anandirs 891 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ∈ ℝ)
334310adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ)
335 mulcl 10058 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((i ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · (𝑔𝑡)) ∈ ℂ)
3364, 329, 335sylancr 696 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (i · (𝑔𝑡)) ∈ ℂ)
337 abstri 14114 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ ((abs‘(𝑓𝑡)) + (abs‘(i · (𝑔𝑡)))))
338326, 336, 337syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ ((abs‘(𝑓𝑡)) + (abs‘(i · (𝑔𝑡)))))
339338anandirs 891 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ ((abs‘(𝑓𝑡)) + (abs‘(i · (𝑔𝑡)))))
340 absmul 14078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((i ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (abs‘(i · (𝑔𝑡))) = ((abs‘i) · (abs‘(𝑔𝑡))))
3414, 329, 340sylancr 696 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(i · (𝑔𝑡))) = ((abs‘i) · (abs‘(𝑔𝑡))))
342 absi 14070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (abs‘i) = 1
343342oveq1i 6700 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((abs‘i) · (abs‘(𝑔𝑡))) = (1 · (abs‘(𝑔𝑡)))
344341, 343syl6eq 2701 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(i · (𝑔𝑡))) = (1 · (abs‘(𝑔𝑡))))
345330recnd 10106 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝑔𝑡)) ∈ ℂ)
346345mulid2d 10096 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (1 · (abs‘(𝑔𝑡))) = (abs‘(𝑔𝑡)))
347344, 346eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(i · (𝑔𝑡))) = (abs‘(𝑔𝑡)))
348347adantll 750 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(i · (𝑔𝑡))) = (abs‘(𝑔𝑡)))
349348oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝑓𝑡)) + (abs‘(i · (𝑔𝑡)))) = ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))
350339, 349breqtrd 4711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))))
351327adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(𝑓𝑡)) ∈ ℝ)
352330adantll 750 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(𝑔𝑡)) ∈ ℝ)
353248adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ)
354258adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥))
355225adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ)
356 ffn 6083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:ℝ⟶ℝ → 𝑓 Fn ℝ)
3571, 356syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 ∈ dom ∫1𝑓 Fn ℝ)
358 fnfvelrn 6396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓 Fn ℝ ∧ 𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ran 𝑓)
359357, 358sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ran 𝑓)
360 elun1 3813 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑡) ∈ ran 𝑓 → (𝑓𝑡) ∈ (ran 𝑓 ∪ ran 𝑔))
361359, 360syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ (ran 𝑓 ∪ ran 𝑔))
362361adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (𝑓𝑡) ∈ (ran 𝑓 ∪ ran 𝑔))
363 fnfvima 6536 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((abs Fn ℂ ∧ (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ (𝑓𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑓𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
364231, 363mp3an1 1451 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ran 𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ (𝑓𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑓𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
365355, 362, 364syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(𝑓𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
366 suprub 11022 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥) ∧ (abs‘(𝑓𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘(𝑓𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
367354, 365, 366syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(𝑓𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
368 ffn 6083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔:ℝ⟶ℝ → 𝑔 Fn ℝ)
3695, 368syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑔 ∈ dom ∫1𝑔 Fn ℝ)
370 fnfvelrn 6396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑔 Fn ℝ ∧ 𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ran 𝑔)
371369, 370sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ran 𝑔)
372 elun2 3814 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔𝑡) ∈ ran 𝑔 → (𝑔𝑡) ∈ (ran 𝑓 ∪ ran 𝑔))
373371, 372syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ (ran 𝑓 ∪ ran 𝑔))
374373adantll 750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (𝑔𝑡) ∈ (ran 𝑓 ∪ ran 𝑔))
375 fnfvima 6536 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((abs Fn ℂ ∧ (ran 𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ (𝑔𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑔𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
376231, 375mp3an1 1451 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((ran 𝑓 ∪ ran 𝑔) ⊆ ℂ ∧ (𝑔𝑡) ∈ (ran 𝑓 ∪ ran 𝑔)) → (abs‘(𝑔𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
377355, 374, 376syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(𝑔𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔)))
378 suprub 11022 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((abs “ (ran 𝑓 ∪ ran 𝑔)) ⊆ ℝ ∧ (abs “ (ran 𝑓 ∪ ran 𝑔)) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))𝑦𝑥) ∧ (abs‘(𝑔𝑡)) ∈ (abs “ (ran 𝑓 ∪ ran 𝑔))) → (abs‘(𝑔𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
379354, 377, 378syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(𝑔𝑡)) ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))
380351, 352, 353, 353, 367, 379le2addd 10684 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝑓𝑡)) + (abs‘(𝑔𝑡))) ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
381301, 333, 334, 350, 380letrd 10232 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
382309adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) = (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
383381, 382breqtrrd 4713 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
38450, 383sylan2 490 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))) ≤ (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
385 iftrue 4125 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
386385adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))))
387 iftrue 4125 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) = (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
388387adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) = (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
389384, 386, 3883brtr4d 4717 . . . . . . . . . . . . . . . . . . 19 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))
390389ex 449 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)))
39158a1i 11 . . . . . . . . . . . . . . . . . . 19 𝑡 ∈ (𝑢(,)𝑤) → 0 ≤ 0)
392 iffalse 4128 . . . . . . . . . . . . . . . . . . 19 𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) = 0)
393 iffalse 4128 . . . . . . . . . . . . . . . . . . 19 𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) = 0)
394391, 392, 3933brtr4d 4717 . . . . . . . . . . . . . . . . . 18 𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))
395390, 394pm2.61d1 171 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))
396395ralrimivw 2996 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))
397 ovex 6718 . . . . . . . . . . . . . . . . . . 19 (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ V
398397, 64ifex 4189 . . . . . . . . . . . . . . . . . 18 if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈ V
399398a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0) ∈ V)
400 eqidd 2652 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)))
40114, 71, 399, 74, 400ofrfval2 6957 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0) ≤ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)))
402396, 401mpbird 247 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)))
403 itg2le 23551 . . . . . . . . . . . . . . 15 (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0)):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0)) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))))
404307, 324, 402, 403syl3anc 1366 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))))
405404adantr 480 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))))
406 mblvol 23344 . . . . . . . . . . . . . . . . 17 ((𝑢(,)𝑤) ∈ dom vol → (vol‘(𝑢(,)𝑤)) = (vol*‘(𝑢(,)𝑤)))
40734, 406ax-mp 5 . . . . . . . . . . . . . . . 16 (vol‘(𝑢(,)𝑤)) = (vol*‘(𝑢(,)𝑤))
408 ovolioo 23382 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤) → (vol*‘(𝑢(,)𝑤)) = (𝑤𝑢))
409407, 408syl5eq 2697 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤) → (vol‘(𝑢(,)𝑤)) = (𝑤𝑢))
410 resubcl 10383 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑤𝑢) ∈ ℝ)
411410ancoms 468 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤𝑢) ∈ ℝ)
4124113adant3 1101 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤) → (𝑤𝑢) ∈ ℝ)
413409, 412eqeltrd 2730 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤) → (vol‘(𝑢(,)𝑤)) ∈ ℝ)
414 elrege0 12316 . . . . . . . . . . . . . . . . 17 (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ (0[,)+∞) ↔ (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ ℝ ∧ 0 ≤ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))
415248, 315, 414sylanbrc 699 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ (0[,)+∞))
416 ge0addcl 12322 . . . . . . . . . . . . . . . 16 ((sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ (0[,)+∞) ∧ sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) ∈ (0[,)+∞)) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,)+∞))
417415, 415, 416syl2anc 694 . . . . . . . . . . . . . . 15 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ) + sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,)+∞))
418309, 417eqeltrd 2730 . . . . . . . . . . . . . 14 ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,)+∞))
419 itg2const 23552 . . . . . . . . . . . . . . 15 (((𝑢(,)𝑤) ∈ dom vol ∧ (vol‘(𝑢(,)𝑤)) ∈ ℝ ∧ (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,)+∞)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) · (vol‘(𝑢(,)𝑤))))
42034, 419mp3an1 1451 . . . . . . . . . . . . . 14 (((vol‘(𝑢(,)𝑤)) ∈ ℝ ∧ (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ (0[,)+∞)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) · (vol‘(𝑢(,)𝑤))))
421413, 418, 420syl2anr 494 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )), 0))) = ((2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) · (vol‘(𝑢(,)𝑤))))
422405, 421breqtrd 4711 . . . . . . . . . . . 12 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ ((2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) · (vol‘(𝑢(,)𝑤))))
423422adantll 750 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ ((2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) · (vol‘(𝑢(,)𝑤))))
424423adantlr 751 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ ((2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) · (vol‘(𝑢(,)𝑤))))
42582ad3antlr 767 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
426413adantl 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (vol‘(𝑢(,)𝑤)) ∈ ℝ)
427271adantll 750 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ+)
428427adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ+)
429425, 426, 428ledivmuld 11963 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤ (vol‘(𝑢(,)𝑤)) ↔ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ≤ ((2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) · (vol‘(𝑢(,)𝑤)))))
430424, 429mpbird 247 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤ (vol‘(𝑢(,)𝑤)))
431 abssubge0 14111 . . . . . . . . . . . 12 ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤) → (abs‘(𝑤𝑢)) = (𝑤𝑢))
432408, 431eqtr4d 2688 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤) → (vol*‘(𝑢(,)𝑤)) = (abs‘(𝑤𝑢)))
433407, 432syl5eq 2697 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤) → (vol‘(𝑢(,)𝑤)) = (abs‘(𝑤𝑢)))
434433adantl 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → (vol‘(𝑢(,)𝑤)) = (abs‘(𝑤𝑢)))
435430, 434breqtrd 4711 . . . . . . . 8 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑢𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤ (abs‘(𝑤𝑢)))
436300, 435syldan 486 . . . . . . 7 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤ (abs‘(𝑤𝑢)))
437436adantllr 755 . . . . . 6 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤ (abs‘(𝑤𝑢)))
438437adantlr 751 . . . . 5 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤ (abs‘(𝑤𝑢)))
439438adantr 480 . . . 4 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) ≤ (abs‘(𝑤𝑢)))
440 simpr 476 . . . 4 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))))
441275, 288, 294, 439, 440lelttrd 10233 . . 3 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))))
44282adantl 481 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
443442ad3antrrr 766 . . . . 5 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) ∈ ℝ)
444127adantl 481 . . . . 5 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
445427adantlr 751 . . . . . 6 ((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ+)
446445adantr 480 . . . . 5 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )) ∈ ℝ+)
447443, 444, 446ltdiv1d 11955 . . . 4 (((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) < (𝑦 / 2) ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))))
448447ad2antrr 762 . . 3 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) < (𝑦 / 2) ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < ))) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))))
449441, 448mpbird 247 . 2 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) < (𝑦 / 2))
450201adantllr 755 . . . 4 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < (𝑦 / 2))
4514503adantr3 1242 . . 3 ((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < (𝑦 / 2))
452451adantr 480 . 2 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0))) < (𝑦 / 2))
45383, 209, 210, 210, 449, 452lt2addd 10688 1 (((((((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢𝑤)) ∧ (abs‘(𝑤𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran 𝑓 ∪ ran 𝑔)), ℝ, < )))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓𝑡) + (i · (𝑔𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹𝑡) − ((𝑓𝑡) + (i · (𝑔𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cun 3605  wss 3607  c0 3948  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762   × cxp 5141  dom cdm 5143  ran crn 5144  cima 5146  ccom 5147  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  𝑟 cofr 6938  Fincfn 7997  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975  ici 9976   + caddc 9977   · cmul 9979  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  2c2 11108  +crp 11870  (,)cioo 12213  [,)cico 12215  [,]cicc 12216  abscabs 14018  vol*covol 23277  volcvol 23278  1citg1 23429  2citg2 23430  𝐿1cibl 23431  citg 23432  0𝑝c0p 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-0p 23482
This theorem is referenced by:  ftc1anclem8  33622
  Copyright terms: Public domain W3C validator