Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem5 Structured version   Visualization version   GIF version

Theorem ftc1anclem5 33160
Description: Lemma for ftc1anc 33164, the existence of a simple function the integral of whose pointwise difference from the function is less than a given positive real. (Contributed by Brendan Leahy, 17-Jun-2018.)
Hypotheses
Ref Expression
ftc1anc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1anc.a (𝜑𝐴 ∈ ℝ)
ftc1anc.b (𝜑𝐵 ∈ ℝ)
ftc1anc.le (𝜑𝐴𝐵)
ftc1anc.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1anc.d (𝜑𝐷 ⊆ ℝ)
ftc1anc.i (𝜑𝐹 ∈ 𝐿1)
ftc1anc.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1anclem5 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌)
Distinct variable groups:   𝑡,𝑓,𝑥,𝐴   𝐵,𝑓,𝑡,𝑥   𝐷,𝑓,𝑡,𝑥   𝑓,𝐹,𝑡,𝑥   𝜑,𝑓,𝑡,𝑥   𝑓,𝐺   𝑓,𝑌,𝑡,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1anclem5
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 iftrue 4070 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))), 0) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
21mpteq2ia 4710 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
32fveq2i 6161 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
4 ftc1anc.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝐷⟶ℂ)
54ffvelrnda 6325 . . . . . . . . . . . . 13 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
6 0cnd 9993 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ ℂ)
75, 6ifclda 4098 . . . . . . . . . . . 12 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
87recld 13884 . . . . . . . . . . 11 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
98adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
10 ftc1anc.d . . . . . . . . . . 11 (𝜑𝐷 ⊆ ℝ)
11 rembl 23248 . . . . . . . . . . . 12 ℝ ∈ dom vol
1211a1i 11 . . . . . . . . . . 11 (𝜑 → ℝ ∈ dom vol)
138adantr 481 . . . . . . . . . . 11 ((𝜑𝑡𝐷) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
14 eldifn 3717 . . . . . . . . . . . . 13 (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡𝐷)
1514adantl 482 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡𝐷)
16 iffalse 4073 . . . . . . . . . . . . . 14 𝑡𝐷 → if(𝑡𝐷, (𝐹𝑡), 0) = 0)
1716fveq2d 6162 . . . . . . . . . . . . 13 𝑡𝐷 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘0))
18 re0 13842 . . . . . . . . . . . . 13 (ℜ‘0) = 0
1917, 18syl6eq 2671 . . . . . . . . . . . 12 𝑡𝐷 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) = 0)
2015, 19syl 17 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) = 0)
21 iftrue 4070 . . . . . . . . . . . . . 14 (𝑡𝐷 → if(𝑡𝐷, (𝐹𝑡), 0) = (𝐹𝑡))
2221fveq2d 6162 . . . . . . . . . . . . 13 (𝑡𝐷 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(𝐹𝑡)))
2322mpteq2ia 4710 . . . . . . . . . . . 12 (𝑡𝐷 ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (𝑡𝐷 ↦ (ℜ‘(𝐹𝑡)))
244feqmptd 6216 . . . . . . . . . . . . . . 15 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
25 ftc1anc.i . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ 𝐿1)
2624, 25eqeltrrd 2699 . . . . . . . . . . . . . 14 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
275iblcn 23505 . . . . . . . . . . . . . 14 (𝜑 → ((𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1 ↔ ((𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐷 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1)))
2826, 27mpbid 222 . . . . . . . . . . . . 13 (𝜑 → ((𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1 ∧ (𝑡𝐷 ↦ (ℑ‘(𝐹𝑡))) ∈ 𝐿1))
2928simpld 475 . . . . . . . . . . . 12 (𝜑 → (𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ 𝐿1)
3023, 29syl5eqel 2702 . . . . . . . . . . 11 (𝜑 → (𝑡𝐷 ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ 𝐿1)
3110, 12, 13, 20, 30iblss2 23512 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ 𝐿1)
328recnd 10028 . . . . . . . . . . . . 13 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
3332adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
34 eqidd 2622 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
35 absf 14027 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → abs:ℂ⟶ℝ)
3736feqmptd 6216 . . . . . . . . . . . 12 (𝜑 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
38 fveq2 6158 . . . . . . . . . . . 12 (𝑥 = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → (abs‘𝑥) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
3933, 34, 37, 38fmptco 6362 . . . . . . . . . . 11 (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) = (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
40 eqid 2621 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
419, 40fmptd 6351 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ)
42 iblmbf 23474 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
4325, 42syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ MblFn)
4424, 43eqeltrrd 2699 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ MblFn)
455ismbfcn2 23346 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑡𝐷 ↦ (𝐹𝑡)) ∈ MblFn ↔ ((𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐷 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn)))
4644, 45mpbid 222 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn ∧ (𝑡𝐷 ↦ (ℑ‘(𝐹𝑡))) ∈ MblFn))
4746simpld 475 . . . . . . . . . . . . . 14 (𝜑 → (𝑡𝐷 ↦ (ℜ‘(𝐹𝑡))) ∈ MblFn)
4823, 47syl5eqel 2702 . . . . . . . . . . . . 13 (𝜑 → (𝑡𝐷 ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)
4910, 12, 13, 20, 48mbfss 23353 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)
50 ftc1anclem1 33156 . . . . . . . . . . . 12 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∈ MblFn)
5141, 49, 50syl2anc 692 . . . . . . . . . . 11 (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∈ MblFn)
5239, 51eqeltrrd 2699 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∈ MblFn)
539, 31, 52iblabsnc 33145 . . . . . . . . 9 (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∈ 𝐿1)
5432abscld 14125 . . . . . . . . . . 11 (𝜑 → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℝ)
5554adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℝ)
5632absge0d 14133 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
5756adantr 481 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 0 ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
5855, 57iblpos 23499 . . . . . . . . 9 (𝜑 → ((𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))), 0))) ∈ ℝ)))
5953, 58mpbid 222 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))), 0))) ∈ ℝ))
6059simprd 479 . . . . . . 7 (𝜑 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))), 0))) ∈ ℝ)
613, 60syl5eqelr 2703 . . . . . 6 (𝜑 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ∈ ℝ)
62 ltsubrp 11826 . . . . . 6 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ∈ ℝ ∧ 𝑌 ∈ ℝ+) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))))
6361, 62sylan 488 . . . . 5 ((𝜑𝑌 ∈ ℝ+) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))))
64 rpre 11799 . . . . . . 7 (𝑌 ∈ ℝ+𝑌 ∈ ℝ)
65 resubcl 10305 . . . . . . 7 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ∈ ℝ ∧ 𝑌 ∈ ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) ∈ ℝ)
6661, 64, 65syl2an 494 . . . . . 6 ((𝜑𝑌 ∈ ℝ+) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) ∈ ℝ)
6761adantr 481 . . . . . 6 ((𝜑𝑌 ∈ ℝ+) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ∈ ℝ)
6866, 67ltnled 10144 . . . . 5 ((𝜑𝑌 ∈ ℝ+) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ↔ ¬ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)))
6963, 68mpbid 222 . . . 4 ((𝜑𝑌 ∈ ℝ+) → ¬ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌))
7054rexrd 10049 . . . . . . . . 9 (𝜑 → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℝ*)
71 elxrge0 12239 . . . . . . . . 9 ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ (0[,]+∞) ↔ ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℝ* ∧ 0 ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
7270, 56, 71sylanbrc 697 . . . . . . . 8 (𝜑 → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ (0[,]+∞))
7372adantr 481 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ (0[,]+∞))
74 eqid 2621 . . . . . . 7 (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) = (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
7573, 74fmptd 6351 . . . . . 6 (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))):ℝ⟶(0[,]+∞))
7675adantr 481 . . . . 5 ((𝜑𝑌 ∈ ℝ+) → (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))):ℝ⟶(0[,]+∞))
7766rexrd 10049 . . . . 5 ((𝜑𝑌 ∈ ℝ+) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) ∈ ℝ*)
78 itg2leub 23441 . . . . 5 (((𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))):ℝ⟶(0[,]+∞) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) ∈ ℝ*) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌))))
7976, 77, 78syl2anc 692 . . . 4 ((𝜑𝑌 ∈ ℝ+) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌))))
8069, 79mtbid 314 . . 3 ((𝜑𝑌 ∈ ℝ+) → ¬ ∀𝑔 ∈ dom ∫1(𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)))
81 rexanali 2994 . . 3 (∃𝑔 ∈ dom ∫1(𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) ↔ ¬ ∀𝑔 ∈ dom ∫1(𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)))
8280, 81sylibr 224 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)))
8366ad2antrr 761 . . . . . . . 8 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) ∈ ℝ)
84 itg1cl 23392 . . . . . . . . 9 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
8584ad2antlr 762 . . . . . . . 8 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → (∫1𝑔) ∈ ℝ)
86 eqid 2621 . . . . . . . . . . . 12 (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
8786i1fpos 23413 . . . . . . . . . . 11 (𝑔 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1)
88 0re 10000 . . . . . . . . . . . . . 14 0 ∈ ℝ
89 i1ff 23383 . . . . . . . . . . . . . . 15 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
9089ffvelrnda 6325 . . . . . . . . . . . . . 14 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℝ)
91 max1 11975 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) → 0 ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
9288, 90, 91sylancr 694 . . . . . . . . . . . . 13 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
9392ralrimiva 2962 . . . . . . . . . . . 12 (𝑔 ∈ dom ∫1 → ∀𝑡 ∈ ℝ 0 ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
94 ax-resscn 9953 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
9594a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → ℝ ⊆ ℂ)
96 fvex 6168 . . . . . . . . . . . . . . . . 17 (𝑔𝑡) ∈ V
97 c0ex 9994 . . . . . . . . . . . . . . . . 17 0 ∈ V
9896, 97ifex 4134 . . . . . . . . . . . . . . . 16 if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ V
9998, 86fnmpti 5989 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) Fn ℝ
10099a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) Fn ℝ)
10195, 1000pledm 23380 . . . . . . . . . . . . 13 (𝑔 ∈ dom ∫1 → (0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ↔ (ℝ × {0}) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
102 reex 9987 . . . . . . . . . . . . . . 15 ℝ ∈ V
103102a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → ℝ ∈ V)
10497a1i 11 . . . . . . . . . . . . . 14 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ∈ V)
105 ifcl 4108 . . . . . . . . . . . . . . 15 (((𝑔𝑡) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℝ)
10690, 88, 105sylancl 693 . . . . . . . . . . . . . 14 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℝ)
107 fconstmpt 5133 . . . . . . . . . . . . . . 15 (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)
108107a1i 11 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0))
109 eqidd 2622 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
110103, 104, 106, 108, 109ofrfval2 6880 . . . . . . . . . . . . 13 (𝑔 ∈ dom ∫1 → ((ℝ × {0}) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
111101, 110bitrd 268 . . . . . . . . . . . 12 (𝑔 ∈ dom ∫1 → (0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
11293, 111mpbird 247 . . . . . . . . . . 11 (𝑔 ∈ dom ∫1 → 0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
113 itg2itg1 23443 . . . . . . . . . . 11 (((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 ∧ 0𝑝𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) → (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = (∫1‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
11487, 112, 113syl2anc 692 . . . . . . . . . 10 (𝑔 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = (∫1‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
115 itg1cl 23392 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 → (∫1‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℝ)
11687, 115syl 17 . . . . . . . . . 10 (𝑔 ∈ dom ∫1 → (∫1‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℝ)
117114, 116eqeltrd 2698 . . . . . . . . 9 (𝑔 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℝ)
118117ad2antlr 762 . . . . . . . 8 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℝ)
119 ltnle 10077 . . . . . . . . . 10 ((((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) ∈ ℝ ∧ (∫1𝑔) ∈ ℝ) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫1𝑔) ↔ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)))
12066, 84, 119syl2an 494 . . . . . . . . 9 (((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫1𝑔) ↔ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)))
121120biimpar 502 . . . . . . . 8 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫1𝑔))
122 max2 11977 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) → (𝑔𝑡) ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
12388, 90, 122sylancr 694 . . . . . . . . . . . . 13 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
124123ralrimiva 2962 . . . . . . . . . . . 12 (𝑔 ∈ dom ∫1 → ∀𝑡 ∈ ℝ (𝑔𝑡) ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
12589feqmptd 6216 . . . . . . . . . . . . 13 (𝑔 ∈ dom ∫1𝑔 = (𝑡 ∈ ℝ ↦ (𝑔𝑡)))
126103, 90, 106, 125, 109ofrfval2 6880 . . . . . . . . . . . 12 (𝑔 ∈ dom ∫1 → (𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ↔ ∀𝑡 ∈ ℝ (𝑔𝑡) ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
127124, 126mpbird 247 . . . . . . . . . . 11 (𝑔 ∈ dom ∫1𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
128 itg1le 23420 . . . . . . . . . . 11 ((𝑔 ∈ dom ∫1 ∧ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) → (∫1𝑔) ≤ (∫1‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
12987, 127, 128mpd3an23 1423 . . . . . . . . . 10 (𝑔 ∈ dom ∫1 → (∫1𝑔) ≤ (∫1‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
130129, 114breqtrrd 4651 . . . . . . . . 9 (𝑔 ∈ dom ∫1 → (∫1𝑔) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
131130ad2antlr 762 . . . . . . . 8 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → (∫1𝑔) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
13283, 85, 118, 121, 131ltletrd 10157 . . . . . . 7 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
133132adantrl 751 . . . . . 6 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ (𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌))) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
134 i1fmbf 23382 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ MblFn)
13587, 134syl 17 . . . . . . . . . . . . . . 15 (𝑔 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ MblFn)
136135adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ MblFn)
137 elrege0 12236 . . . . . . . . . . . . . . . . 17 (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
138106, 92, 137sylanbrc 697 . . . . . . . . . . . . . . . 16 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ (0[,)+∞))
139138, 86fmptd 6351 . . . . . . . . . . . . . . 15 (𝑔 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)):ℝ⟶(0[,)+∞))
140139adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)):ℝ⟶(0[,)+∞))
141117adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℝ)
142106recnd 10028 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℂ)
143142negcld 10339 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℂ)
144142, 143ifcld 4109 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ ℂ)
145 subcl 10240 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ ℂ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℂ)
14632, 144, 145syl2an 494 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℂ)
147146anassrs 679 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℂ)
148147abscld 14125 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) ∈ ℝ)
149147absge0d 14133 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))
150 elrege0 12236 . . . . . . . . . . . . . . . 16 ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) ∈ (0[,)+∞) ↔ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) ∈ ℝ ∧ 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))
151148, 149, 150sylanbrc 697 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) ∈ (0[,)+∞))
152 eqid 2621 . . . . . . . . . . . . . . 15 (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))
153151, 152fmptd 6351 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))):ℝ⟶(0[,)+∞))
154 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → (𝑥𝐷𝑡𝐷))
155 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
156154, 155ifbieq1d 4087 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → if(𝑥𝐷, (𝐹𝑥), 0) = if(𝑡𝐷, (𝐹𝑡), 0))
157156fveq2d 6162 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑡 → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
158 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))
159 fvex 6168 . . . . . . . . . . . . . . . . . . . 20 (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
160157, 158, 159fvmpt 6249 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
161157breq2d 4635 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → (0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) ↔ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
162 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑡 → (𝑔𝑥) = (𝑔𝑡))
163162breq2d 4635 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑡 → (0 ≤ (𝑔𝑥) ↔ 0 ≤ (𝑔𝑡)))
164163, 162ifbieq1d 4087 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
165164negeqd 10235 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑡 → -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) = -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
166161, 164, 165ifbieq12d 4091 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑡 → if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)) = if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
167 eqid 2621 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))
168 negex 10239 . . . . . . . . . . . . . . . . . . . . 21 -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ V
16998, 168ifex 4134 . . . . . . . . . . . . . . . . . . . 20 if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ V
170166, 167, 169fvmpt 6249 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡) = if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
171160, 170oveq12d 6633 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ ℝ → (((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
172171fveq2d 6162 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))
173172mpteq2ia 4710 . . . . . . . . . . . . . . . 16 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))
174173fveq2i 6161 . . . . . . . . . . . . . . 15 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))
175102a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ∈ V)
176 fvex 6168 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔𝑥) ∈ V
177176, 97ifex 4134 . . . . . . . . . . . . . . . . . . . . 21 if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) ∈ V
178177, 97ifex 4134 . . . . . . . . . . . . . . . . . . . 20 if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0) ∈ V
179178a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ) → if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0) ∈ V)
180 ovex 6643 . . . . . . . . . . . . . . . . . . . . 21 (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)) ∈ V
18197, 180ifex 4134 . . . . . . . . . . . . . . . . . . . 20 if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∈ V
182181a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ) → if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∈ V)
183 ffn 6012 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷)
184 frn 6020 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹:𝐷⟶ℂ → ran 𝐹 ⊆ ℂ)
185 ref 13802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℜ:ℂ⟶ℝ
186 ffn 6012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
187185, 186ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℜ Fn ℂ
188 fnco 5967 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((ℜ Fn ℂ ∧ 𝐹 Fn 𝐷 ∧ ran 𝐹 ⊆ ℂ) → (ℜ ∘ 𝐹) Fn 𝐷)
189187, 188mp3an1 1408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹 Fn 𝐷 ∧ ran 𝐹 ⊆ ℂ) → (ℜ ∘ 𝐹) Fn 𝐷)
190183, 184, 189syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝐷⟶ℂ → (ℜ ∘ 𝐹) Fn 𝐷)
191 elpreima 6303 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℜ ∘ 𝐹) Fn 𝐷 → (𝑥 ∈ ((ℜ ∘ 𝐹) “ (0[,)+∞)) ↔ (𝑥𝐷 ∧ ((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞))))
1924, 190, 1913syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑥 ∈ ((ℜ ∘ 𝐹) “ (0[,)+∞)) ↔ (𝑥𝐷 ∧ ((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞))))
193 fco 6025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐷⟶ℂ) → (ℜ ∘ 𝐹):𝐷⟶ℝ)
194185, 4, 193sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (ℜ ∘ 𝐹):𝐷⟶ℝ)
195194ffvelrnda 6325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥𝐷) → ((ℜ ∘ 𝐹)‘𝑥) ∈ ℝ)
196195biantrurd 529 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥𝐷) → (0 ≤ ((ℜ ∘ 𝐹)‘𝑥) ↔ (((ℜ ∘ 𝐹)‘𝑥) ∈ ℝ ∧ 0 ≤ ((ℜ ∘ 𝐹)‘𝑥))))
197 elrege0 12236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞) ↔ (((ℜ ∘ 𝐹)‘𝑥) ∈ ℝ ∧ 0 ≤ ((ℜ ∘ 𝐹)‘𝑥)))
198196, 197syl6bbr 278 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥𝐷) → (0 ≤ ((ℜ ∘ 𝐹)‘𝑥) ↔ ((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞)))
199 fvco3 6242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹:𝐷⟶ℂ ∧ 𝑥𝐷) → ((ℜ ∘ 𝐹)‘𝑥) = (ℜ‘(𝐹𝑥)))
2004, 199sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥𝐷) → ((ℜ ∘ 𝐹)‘𝑥) = (ℜ‘(𝐹𝑥)))
201200breq2d 4635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥𝐷) → (0 ≤ ((ℜ ∘ 𝐹)‘𝑥) ↔ 0 ≤ (ℜ‘(𝐹𝑥))))
202198, 201bitr3d 270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥𝐷) → (((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (ℜ‘(𝐹𝑥))))
203202pm5.32da 672 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑥𝐷 ∧ ((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞)) ↔ (𝑥𝐷 ∧ 0 ≤ (ℜ‘(𝐹𝑥)))))
204192, 203bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑥 ∈ ((ℜ ∘ 𝐹) “ (0[,)+∞)) ↔ (𝑥𝐷 ∧ 0 ≤ (ℜ‘(𝐹𝑥)))))
205204adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ ((ℜ ∘ 𝐹) “ (0[,)+∞)) ↔ (𝑥𝐷 ∧ 0 ≤ (ℜ‘(𝐹𝑥)))))
206 0le0 11070 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ 0
207206, 18breqtrri 4650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ (ℜ‘0)
208207biantru 526 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐷 ↔ (¬ 𝑥𝐷 ∧ 0 ≤ (ℜ‘0)))
209 eldif 3570 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ (ℝ ∖ 𝐷) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐷))
210209baibr 944 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ → (¬ 𝑥𝐷𝑥 ∈ (ℝ ∖ 𝐷)))
211208, 210syl5rbbr 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ 𝐷) ↔ (¬ 𝑥𝐷 ∧ 0 ≤ (ℜ‘0))))
212211adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ 𝐷) ↔ (¬ 𝑥𝐷 ∧ 0 ≤ (ℜ‘0))))
213205, 212orbi12d 745 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ ℝ) → ((𝑥 ∈ ((ℜ ∘ 𝐹) “ (0[,)+∞)) ∨ 𝑥 ∈ (ℝ ∖ 𝐷)) ↔ ((𝑥𝐷 ∧ 0 ≤ (ℜ‘(𝐹𝑥))) ∨ (¬ 𝑥𝐷 ∧ 0 ≤ (ℜ‘0)))))
214 elun 3737 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ↔ (𝑥 ∈ ((ℜ ∘ 𝐹) “ (0[,)+∞)) ∨ 𝑥 ∈ (ℝ ∖ 𝐷)))
215 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑥𝐷, (𝐹𝑥), 0) = (𝐹𝑥) → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℜ‘(𝐹𝑥)))
216215breq2d 4635 . . . . . . . . . . . . . . . . . . . . . . 23 (if(𝑥𝐷, (𝐹𝑥), 0) = (𝐹𝑥) → (0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) ↔ 0 ≤ (ℜ‘(𝐹𝑥))))
217 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . . . 24 (if(𝑥𝐷, (𝐹𝑥), 0) = 0 → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℜ‘0))
218217breq2d 4635 . . . . . . . . . . . . . . . . . . . . . . 23 (if(𝑥𝐷, (𝐹𝑥), 0) = 0 → (0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) ↔ 0 ≤ (ℜ‘0)))
219216, 218elimif 4100 . . . . . . . . . . . . . . . . . . . . . 22 (0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) ↔ ((𝑥𝐷 ∧ 0 ≤ (ℜ‘(𝐹𝑥))) ∨ (¬ 𝑥𝐷 ∧ 0 ≤ (ℜ‘0))))
220213, 214, 2193bitr4g 303 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ↔ 0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))))
221220ifbid 4086 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ) → if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0) = if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0))
222221mpteq2dva 4714 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0)))
223220ifbid 4086 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ) → if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) = if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))
224223mpteq2dva 4714 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))) = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))))
225175, 179, 182, 222, 224offval2 6879 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))) = (𝑥 ∈ ℝ ↦ (if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0) + if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))))
226 ovif12 6704 . . . . . . . . . . . . . . . . . . . 20 (if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0) + if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))) = if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), (if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) + 0), (0 + (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))
22789ffvelrnda 6325 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
228227recnd 10028 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℂ)
229 0cn 9992 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
230 ifcl 4108 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) ∈ ℂ)
231228, 229, 230sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) ∈ ℂ)
232231addid1d 10196 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) + 0) = if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))
233231mulm1d 10442 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)) = -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))
234233oveq2d 6631 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (0 + (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) = (0 + -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))
235231negcld 10339 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) ∈ ℂ)
236235addid2d 10197 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (0 + -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)) = -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))
237234, 236eqtrd 2655 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (0 + (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) = -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))
238232, 237ifeq12d 4084 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), (if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) + 0), (0 + (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))) = if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))
239226, 238syl5eq 2667 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom ∫1𝑥 ∈ ℝ) → (if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0) + if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))) = if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))
240239mpteq2dva 4714 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0) + if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))) = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))
241225, 240sylan9eq 2675 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔 ∈ dom ∫1) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))) = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))
242 0xr 10046 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
243 pnfxr 10052 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
244 0ltpnf 11916 . . . . . . . . . . . . . . . . . . . . . . 23 0 < +∞
245 snunioo 12256 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → ({0} ∪ (0(,)+∞)) = (0[,)+∞))
246242, 243, 244, 245mp3an 1421 . . . . . . . . . . . . . . . . . . . . . 22 ({0} ∪ (0(,)+∞)) = (0[,)+∞)
247246imaeq2i 5433 . . . . . . . . . . . . . . . . . . . . 21 ((ℜ ∘ 𝐹) “ ({0} ∪ (0(,)+∞))) = ((ℜ ∘ 𝐹) “ (0[,)+∞))
248 imaundi 5514 . . . . . . . . . . . . . . . . . . . . 21 ((ℜ ∘ 𝐹) “ ({0} ∪ (0(,)+∞))) = (((ℜ ∘ 𝐹) “ {0}) ∪ ((ℜ ∘ 𝐹) “ (0(,)+∞)))
249247, 248eqtr3i 2645 . . . . . . . . . . . . . . . . . . . 20 ((ℜ ∘ 𝐹) “ (0[,)+∞)) = (((ℜ ∘ 𝐹) “ {0}) ∪ ((ℜ ∘ 𝐹) “ (0(,)+∞)))
250 ismbfcn 23338 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝐷⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
2514, 250syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
25243, 251mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))
253252simpld 475 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℜ ∘ 𝐹) ∈ MblFn)
254 mbfimasn 23341 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):𝐷⟶ℝ ∧ 0 ∈ ℝ) → ((ℜ ∘ 𝐹) “ {0}) ∈ dom vol)
25588, 254mp3an3 1410 . . . . . . . . . . . . . . . . . . . . . 22 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):𝐷⟶ℝ) → ((ℜ ∘ 𝐹) “ {0}) ∈ dom vol)
256 mbfima 23339 . . . . . . . . . . . . . . . . . . . . . 22 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):𝐷⟶ℝ) → ((ℜ ∘ 𝐹) “ (0(,)+∞)) ∈ dom vol)
257 unmbl 23245 . . . . . . . . . . . . . . . . . . . . . 22 ((((ℜ ∘ 𝐹) “ {0}) ∈ dom vol ∧ ((ℜ ∘ 𝐹) “ (0(,)+∞)) ∈ dom vol) → (((ℜ ∘ 𝐹) “ {0}) ∪ ((ℜ ∘ 𝐹) “ (0(,)+∞))) ∈ dom vol)
258255, 256, 257syl2anc 692 . . . . . . . . . . . . . . . . . . . . 21 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℜ ∘ 𝐹):𝐷⟶ℝ) → (((ℜ ∘ 𝐹) “ {0}) ∪ ((ℜ ∘ 𝐹) “ (0(,)+∞))) ∈ dom vol)
259253, 194, 258syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((ℜ ∘ 𝐹) “ {0}) ∪ ((ℜ ∘ 𝐹) “ (0(,)+∞))) ∈ dom vol)
260249, 259syl5eqel 2702 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((ℜ ∘ 𝐹) “ (0[,)+∞)) ∈ dom vol)
261 fdm 6018 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:𝐷⟶ℂ → dom 𝐹 = 𝐷)
2624, 261syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 = 𝐷)
263 mbfdm 23335 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
26443, 263syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 ∈ dom vol)
265262, 264eqeltrrd 2699 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ dom vol)
266 difmbl 23251 . . . . . . . . . . . . . . . . . . . 20 ((ℝ ∈ dom vol ∧ 𝐷 ∈ dom vol) → (ℝ ∖ 𝐷) ∈ dom vol)
26711, 265, 266sylancr 694 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ ∖ 𝐷) ∈ dom vol)
268 unmbl 23245 . . . . . . . . . . . . . . . . . . 19 ((((ℜ ∘ 𝐹) “ (0[,)+∞)) ∈ dom vol ∧ (ℝ ∖ 𝐷) ∈ dom vol) → (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ∈ dom vol)
269260, 267, 268syl2anc 692 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ∈ dom vol)
270 fveq2 6158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑥 → (𝑔𝑡) = (𝑔𝑥))
271270breq2d 4635 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑥 → (0 ≤ (𝑔𝑡) ↔ 0 ≤ (𝑔𝑥)))
272271, 270ifbieq1d 4087 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑥 → if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) = if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))
273272, 86, 177fvmpt 6249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))‘𝑥) = if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))
274273eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0) = ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))‘𝑥))
275274ifeq1d 4082 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0) = if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))‘𝑥), 0))
276275mpteq2ia 4710 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))‘𝑥), 0))
277276i1fres 23412 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 ∧ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0)) ∈ dom ∫1)
278 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1)
279 neg1rr 11085 . . . . . . . . . . . . . . . . . . . . . 22 -1 ∈ ℝ
280279a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 → -1 ∈ ℝ)
281278, 280i1fmulc 23410 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 → ((ℝ × {-1}) ∘𝑓 · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ dom ∫1)
282 cmmbl 23242 . . . . . . . . . . . . . . . . . . . 20 ((((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ∈ dom vol → (ℝ ∖ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷))) ∈ dom vol)
283 ifnot 4111 . . . . . . . . . . . . . . . . . . . . . . 23 if(¬ 𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)), 0) = if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))
284 eldif 3570 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (ℝ ∖ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷))) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷))))
285284baibr 944 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (¬ 𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ↔ 𝑥 ∈ (ℝ ∖ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)))))
286 tru 1484 . . . . . . . . . . . . . . . . . . . . . . . . . 26
287 negex 10239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 -1 ∈ V
288287fconst 6058 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℝ × {-1}):ℝ⟶{-1}
289 ffn 6012 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((ℝ × {-1}):ℝ⟶{-1} → (ℝ × {-1}) Fn ℝ)
290288, 289mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → (ℝ × {-1}) Fn ℝ)
29199a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) Fn ℝ)
292102a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → ℝ ∈ V)
293 inidm 3806 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ℝ ∩ ℝ) = ℝ
294287fvconst2 6434 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → ((ℝ × {-1})‘𝑥) = -1)
295294adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊤ ∧ 𝑥 ∈ ℝ) → ((ℝ × {-1})‘𝑥) = -1)
296273adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊤ ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))‘𝑥) = if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))
297290, 291, 292, 292, 293, 295, 296ofval 6871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((⊤ ∧ 𝑥 ∈ ℝ) → (((ℝ × {-1}) ∘𝑓 · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))‘𝑥) = (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))
298286, 297mpan 705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ → (((ℝ × {-1}) ∘𝑓 · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))‘𝑥) = (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))
299298eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ → (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)) = (((ℝ × {-1}) ∘𝑓 · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))‘𝑥))
300285, 299ifbieq1d 4087 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → if(¬ 𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)), 0) = if(𝑥 ∈ (ℝ ∖ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷))), (((ℝ × {-1}) ∘𝑓 · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))‘𝑥), 0))
301283, 300syl5eqr 2669 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) = if(𝑥 ∈ (ℝ ∖ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷))), (((ℝ × {-1}) ∘𝑓 · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))‘𝑥), 0))
302301mpteq2ia 4710 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷))), (((ℝ × {-1}) ∘𝑓 · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))‘𝑥), 0))
303302i1fres 23412 . . . . . . . . . . . . . . . . . . . 20 ((((ℝ × {-1}) ∘𝑓 · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ dom ∫1 ∧ (ℝ ∖ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷))) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))) ∈ dom ∫1)
304281, 282, 303syl2an 494 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 ∧ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))) ∈ dom ∫1)
305277, 304i1fadd 23402 . . . . . . . . . . . . . . . . . 18 (((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ dom ∫1 ∧ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ∈ dom vol) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))) ∈ dom ∫1)
30687, 269, 305syl2anr 495 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔 ∈ dom ∫1) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (((ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ ∖ 𝐷)), 0, (-1 · if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))))) ∈ dom ∫1)
307241, 306eqeltrrd 2699 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ dom ∫1) → (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∈ dom ∫1)
308157cbvmptv 4720 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
309308, 31syl5eqel 2702 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
3109, 308fmptd 6351 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
311309, 310jca 554 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
312311adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑔 ∈ dom ∫1) → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
313 ftc1anclem4 33159 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡))))) ∈ ℝ)
3143133expb 1263 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡))))) ∈ ℝ)
315307, 312, 314syl2anc 692 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡))))) ∈ ℝ)
316174, 315syl5eqelr 2703 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) ∈ ℝ)
317136, 140, 141, 153, 316itg2addnc 33135 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))))
318102a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ dom ∫1) → ℝ ∈ V)
31998a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ V)
320 eqidd 2622 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
321 eqidd 2622 . . . . . . . . . . . . . . 15 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))
322318, 319, 148, 320, 321offval2 6879 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) = (𝑡 ∈ ℝ ↦ (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))))
323322fveq2d 6162 . . . . . . . . . . . . 13 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))))
324317, 323eqtr3d 2657 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ dom ∫1) → ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))))
325324adantr 481 . . . . . . . . . . 11 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))))
326 nfv 1840 . . . . . . . . . . . . . 14 𝑡(𝜑𝑔 ∈ dom ∫1)
327 nfcv 2761 . . . . . . . . . . . . . . 15 𝑡𝑔
328 nfcv 2761 . . . . . . . . . . . . . . 15 𝑡𝑟
329 nfmpt1 4717 . . . . . . . . . . . . . . 15 𝑡(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
330327, 328, 329nfbr 4669 . . . . . . . . . . . . . 14 𝑡 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
331326, 330nfan 1825 . . . . . . . . . . . . 13 𝑡((𝜑𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
332 anass 680 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) ↔ (𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)))
333 ffn 6012 . . . . . . . . . . . . . . . . . . . . 21 (𝑔:ℝ⟶ℝ → 𝑔 Fn ℝ)
33489, 333syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑔 ∈ dom ∫1𝑔 Fn ℝ)
335 fvex 6168 . . . . . . . . . . . . . . . . . . . . . 22 (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ V
336335, 74fnmpti 5989 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) Fn ℝ
337336a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑔 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) Fn ℝ)
338 eqidd 2622 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) = (𝑔𝑡))
33974fvmpt2 6258 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ∧ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ V) → ((𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))‘𝑡) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
340335, 339mpan2 706 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ℝ → ((𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))‘𝑡) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
341340adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))‘𝑡) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
342334, 337, 103, 103, 293, 338, 341ofrval 6872 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom ∫1𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 𝑡 ∈ ℝ) → (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
3433423com23 1268 . . . . . . . . . . . . . . . . . 18 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
3443433expa 1262 . . . . . . . . . . . . . . . . 17 (((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
345344adantll 749 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
346 resubcl 10305 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ ℝ)
3478, 106, 346syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ ℝ)
348347ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ ℝ)
349 absid 13986 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
3508, 349sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
351350breq2d 4635 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ↔ (𝑔𝑡) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
352351biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (𝑔𝑡) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
353352an32s 845 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (𝑔𝑡) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
354353adantllr 754 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (𝑔𝑡) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
355 breq1 4626 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔𝑡) = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) → ((𝑔𝑡) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
356 breq1 4626 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) → (0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
357355, 356ifboth 4102 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔𝑡) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
358354, 357sylancom 700 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
359 subge0 10501 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℝ) → (0 ≤ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ↔ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
3608, 106, 359syl2an 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → (0 ≤ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ↔ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
361360ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (0 ≤ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ↔ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
362358, 361mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → 0 ≤ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
363348, 362absidd 14111 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
364 iftrue 4070 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
365364oveq2d 6631 . . . . . . . . . . . . . . . . . . . . . 22 (0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
366365fveq2d 6162 . . . . . . . . . . . . . . . . . . . . 21 (0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
367366adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
3688ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
369349oveq1d 6630 . . . . . . . . . . . . . . . . . . . . 21 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
370368, 369sylan 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
371363, 367, 3703eqtr4d 2665 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) = ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
372106renegcld 10417 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℝ)
373 resubcl 10305 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ ℝ)
3748, 372, 373syl2an 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ ℝ)
375374ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ∈ ℝ)
37690ad3antlr 766 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (𝑔𝑡) ∈ ℝ)
3778ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
3788adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
379 ltnle 10077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < 0 ↔ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
38088, 379mpan2 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < 0 ↔ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
381 ltle 10086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < 0 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0))
38288, 381mpan2 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < 0 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0))
383380, 382sylbird 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ → (¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0))
384383imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0)
385 absnid 13988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0) → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = -(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
386384, 385syldan 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = -(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
387386breq2d 4635 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ↔ (𝑔𝑡) ≤ -(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
388387biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (𝑔𝑡) ≤ -(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
389388an32s 845 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (𝑔𝑡) ≤ -(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
390378, 389sylanl1 681 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (𝑔𝑡) ≤ -(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
391376, 377, 390lenegcon2d 10570 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -(𝑔𝑡))
392 simpll 789 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → 𝜑)
39388a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → 0 ∈ ℝ)
3948, 393ltnled 10144 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < 0 ↔ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
3958, 88, 381sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < 0 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0))
396394, 395sylbird 250 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0))
397396imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0)
398392, 397sylan 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0)
399 negeq 10233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔𝑡) = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) → -(𝑔𝑡) = -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
400399breq2d 4635 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔𝑡) = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -(𝑔𝑡) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
401 neg0 10287 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -0 = 0
402 negeq 10233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) → -0 = -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
403401, 402syl5eqr 2669 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) → 0 = -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
404403breq2d 4635 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
405400, 404ifboth 4102 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -(𝑔𝑡) ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
406391, 398, 405syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
407 suble0 10502 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ≤ 0 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
4088, 372, 407syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ≤ 0 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
409408ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ≤ 0 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
410406, 409mpbird 247 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) ≤ 0)
411375, 410absnidd 14102 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = -((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
412 subneg 10290 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℂ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
413412negeqd 10235 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℂ) → -((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = -((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
414 negdi2 10299 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℂ) → -((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (-(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
415413, 414eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℂ) → -((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (-(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
41632, 142, 415syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → -((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (-(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
417416ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → -((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (-(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
418411, 417eqtrd 2655 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = (-(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
419 iffalse 4073 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))
420419oveq2d 6631 . . . . . . . . . . . . . . . . . . . . . 22 (¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
421420fveq2d 6162 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
422421adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
4238, 385sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ≤ 0) → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = -(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
424397, 423syldan 487 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = -(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
425424oveq1d 6630 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (-(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
426392, 425sylan 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)) = (-(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
427418, 422, 4263eqtr4d 2665 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ 0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) = ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
428371, 427pm2.61dan 831 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))) = ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
429428oveq2d 6631 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))) = (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
43054recnd 10028 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
431 pncan3 10249 . . . . . . . . . . . . . . . . . . 19 ((if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) ∈ ℂ ∧ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ) → (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
432142, 430, 431syl2anr 495 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
433432adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + ((abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) − if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
434429, 433eqtrd 2655 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ (𝑔𝑡) ≤ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) → (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
435345, 434syldan 487 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
436332, 435sylanb 489 . . . . . . . . . . . . . 14 ((((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
437436an32s 845 . . . . . . . . . . . . 13 ((((𝜑𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ∧ 𝑡 ∈ ℝ) → (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))) = (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))
438331, 437mpteq2da 4713 . . . . . . . . . . . 12 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (𝑡 ∈ ℝ ↦ (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) = (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
439438fveq2d 6162 . . . . . . . . . . 11 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (∫2‘(𝑡 ∈ ℝ ↦ (if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0) + (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))))
440325, 439eqtrd 2655 . . . . . . . . . 10 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))))
441440breq1d 4633 . . . . . . . . 9 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌)))
442441adantllr 754 . . . . . . . 8 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌)))
443316adantlr 750 . . . . . . . . . 10 (((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) ∈ ℝ)
44464ad2antlr 762 . . . . . . . . . 10 (((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) → 𝑌 ∈ ℝ)
445117adantl 482 . . . . . . . . . 10 (((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℝ)
446443, 444, 445ltadd2d 10153 . . . . . . . . 9 (((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌 ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌)))
447446adantr 481 . . . . . . . 8 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌 ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌)))
448 ltsubadd 10458 . . . . . . . . . . 11 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ∈ ℝ) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌)))
44961, 64, 117, 448syl3an 1365 . . . . . . . . . 10 ((𝜑𝑌 ∈ ℝ+𝑔 ∈ dom ∫1) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌)))
4504493expa 1262 . . . . . . . . 9 (((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌)))
451450adantr 481 . . . . . . . 8 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) < ((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))) + 𝑌)))
452442, 447, 4513bitr4d 300 . . . . . . 7 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌 ↔ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))
453452adantrr 752 . . . . . 6 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ (𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌))) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌 ↔ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))
454133, 453mpbird 247 . . . . 5 ((((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) ∧ (𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌)
455454ex 450 . . . 4 (((𝜑𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1) → ((𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌))
456455reximdva 3013 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑔 ∈ dom ∫1(𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌))
457 fveq1 6157 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) → (𝑓𝑡) = ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0)))‘𝑡))
458457, 170sylan9eq 2675 . . . . . . . . . . . . 13 ((𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∧ 𝑡 ∈ ℝ) → (𝑓𝑡) = if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))
459458oveq2d 6631 . . . . . . . . . . . 12 ((𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))
460459fveq2d 6162 . . . . . . . . . . 11 ((𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))
461460mpteq2dva 4714 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0))))))
462461fveq2d 6162 . . . . . . . . 9 (𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))))
463462breq1d 4633 . . . . . . . 8 (𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌 ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌))
464463rspcev 3299 . . . . . . 7 (((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∈ dom ∫1 ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌)
465464ex 450 . . . . . 6 ((𝑥 ∈ ℝ ↦ if(0 ≤ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)), if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0), -if(0 ≤ (𝑔𝑥), (𝑔𝑥), 0))) ∈ dom ∫1 → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌 → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌))
466307, 465syl 17 . . . . 5 ((𝜑𝑔 ∈ dom ∫1) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌 → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌))
467466rexlimdva 3026 . . . 4 (𝜑 → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌 → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌))
468467adantr 481 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − if(0 ≤ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)), if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0), -if(0 ≤ (𝑔𝑡), (𝑔𝑡), 0)))))) < 𝑌 → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌))
469456, 468syld 47 . 2 ((𝜑𝑌 ∈ ℝ+) → (∃𝑔 ∈ dom ∫1(𝑔𝑟 ≤ (𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))) ∧ ¬ (∫1𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))))) − 𝑌)) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌))
47082, 469mpd 15 1 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wtru 1481  wcel 1987  wral 2908  wrex 2909  Vcvv 3190  cdif 3557  cun 3558  wss 3560  ifcif 4064  {csn 4155   class class class wbr 4623  cmpt 4683   × cxp 5082  ccnv 5083  dom cdm 5084  ran crn 5085  cima 5087  ccom 5088   Fn wfn 5852  wf 5853  cfv 5857  (class class class)co 6615  𝑓 cof 6860  𝑟 cofr 6861  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  +∞cpnf 10031  *cxr 10033   < clt 10034  cle 10035  cmin 10226  -cneg 10227  +crp 11792  (,)cioo 12133  [,)cico 12135  [,]cicc 12136  cre 13787  cim 13788  abscabs 13924  volcvol 23172  MblFncmbf 23323  1citg1 23324  2citg2 23325  𝐿1cibl 23326  citg 23327  0𝑝c0p 23376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-disj 4594  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-ofr 6863  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-rest 16023  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-top 20639  df-topon 20656  df-bases 20690  df-cmp 21130  df-ovol 23173  df-vol 23174  df-mbf 23328  df-itg1 23329  df-itg2 23330  df-ibl 23331  df-0p 23377
This theorem is referenced by:  ftc1anclem6  33161
  Copyright terms: Public domain W3C validator