Step | Hyp | Ref
| Expression |
1 | | ffvelrn 6520 |
. . . . . . . . . 10
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(𝐺‘𝑡) ∈ ℝ) |
2 | 1 | recnd 10260 |
. . . . . . . . 9
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(𝐺‘𝑡) ∈ ℂ) |
3 | | i1ff 23642 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
4 | 3 | ffvelrnda 6522 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝐹‘𝑡) ∈
ℝ) |
5 | 4 | recnd 10260 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝐹‘𝑡) ∈
ℂ) |
6 | | subcl 10472 |
. . . . . . . . 9
⊢ (((𝐺‘𝑡) ∈ ℂ ∧ (𝐹‘𝑡) ∈ ℂ) → ((𝐺‘𝑡) − (𝐹‘𝑡)) ∈ ℂ) |
7 | 2, 5, 6 | syl2anr 496 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((𝐺‘𝑡) − (𝐹‘𝑡)) ∈ ℂ) |
8 | 7 | anandirs 909 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((𝐺‘𝑡) − (𝐹‘𝑡)) ∈ ℂ) |
9 | 8 | abscld 14374 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈ ℝ) |
10 | 9 | rexrd 10281 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈
ℝ*) |
11 | 8 | absge0d 14382 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) |
12 | | elxrge0 12474 |
. . . . 5
⊢
((abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈ (0[,]+∞) ↔
((abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) |
13 | 10, 11, 12 | sylanbrc 701 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈ (0[,]+∞)) |
14 | | eqid 2760 |
. . . 4
⊢ (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) |
15 | 13, 14 | fmptd 6548 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))):ℝ⟶(0[,]+∞)) |
16 | 15 | 3adant2 1126 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))):ℝ⟶(0[,]+∞)) |
17 | | reex 10219 |
. . . . . . 7
⊢ ℝ
∈ V |
18 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → ℝ
∈ V) |
19 | | fvexd 6364 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈ V) |
20 | | fvexd 6364 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐹‘𝑡)) ∈ V) |
21 | | eqidd 2761 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) |
22 | | eqidd 2761 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹‘𝑡)))) |
23 | 18, 19, 20, 21, 22 | offval2 7079 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∘𝑓
+ (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
24 | 23 | fveq2d 6356 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))))) =
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))))) |
25 | | id 22 |
. . . . . . . . . 10
⊢ (𝐺:ℝ⟶ℝ →
𝐺:ℝ⟶ℝ) |
26 | 25 | feqmptd 6411 |
. . . . . . . . 9
⊢ (𝐺:ℝ⟶ℝ →
𝐺 = (𝑡 ∈ ℝ ↦ (𝐺‘𝑡))) |
27 | | absf 14276 |
. . . . . . . . . . 11
⊢
abs:ℂ⟶ℝ |
28 | 27 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐺:ℝ⟶ℝ →
abs:ℂ⟶ℝ) |
29 | 28 | feqmptd 6411 |
. . . . . . . . 9
⊢ (𝐺:ℝ⟶ℝ →
abs = (𝑥 ∈ ℂ
↦ (abs‘𝑥))) |
30 | | fveq2 6352 |
. . . . . . . . 9
⊢ (𝑥 = (𝐺‘𝑡) → (abs‘𝑥) = (abs‘(𝐺‘𝑡))) |
31 | 2, 26, 29, 30 | fmptco 6559 |
. . . . . . . 8
⊢ (𝐺:ℝ⟶ℝ →
(abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡)))) |
32 | 31 | adantl 473 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (abs ∘
𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) |
33 | | iblmbf 23733 |
. . . . . . . . 9
⊢ (𝐺 ∈ 𝐿1
→ 𝐺 ∈
MblFn) |
34 | | ftc1anclem1 33798 |
. . . . . . . . 9
⊢ ((𝐺:ℝ⟶ℝ ∧
𝐺 ∈ MblFn) → (abs
∘ 𝐺) ∈
MblFn) |
35 | 33, 34 | sylan2 492 |
. . . . . . . 8
⊢ ((𝐺:ℝ⟶ℝ ∧
𝐺 ∈
𝐿1) → (abs ∘ 𝐺) ∈ MblFn) |
36 | 35 | ancoms 468 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (abs ∘
𝐺) ∈
MblFn) |
37 | 32, 36 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈
MblFn) |
38 | 37 | 3adant1 1125 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈
MblFn) |
39 | 2 | abscld 14374 |
. . . . . . . 8
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈
ℝ) |
40 | 2 | absge0d 14382 |
. . . . . . . 8
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) → 0
≤ (abs‘(𝐺‘𝑡))) |
41 | | elrege0 12471 |
. . . . . . . 8
⊢
((abs‘(𝐺‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝐺‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝐺‘𝑡)))) |
42 | 39, 40, 41 | sylanbrc 701 |
. . . . . . 7
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈
(0[,)+∞)) |
43 | | eqid 2760 |
. . . . . . 7
⊢ (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡))) |
44 | 42, 43 | fmptd 6548 |
. . . . . 6
⊢ (𝐺:ℝ⟶ℝ →
(𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))):ℝ⟶(0[,)+∞)) |
45 | 44 | 3ad2ant3 1130 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))):ℝ⟶(0[,)+∞)) |
46 | | iftrue 4236 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ,
(abs‘(𝐺‘𝑡)), 0) = (abs‘(𝐺‘𝑡))) |
47 | 46 | mpteq2ia 4892 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ,
(abs‘(𝐺‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡))) |
48 | 47 | fveq2i 6355 |
. . . . . . 7
⊢
(∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺‘𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡)))) |
49 | 1 | adantll 752 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (𝐺‘𝑡) ∈ ℝ) |
50 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → 𝐺:ℝ⟶ℝ) |
51 | 50 | feqmptd 6411 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺‘𝑡))) |
52 | | simpl 474 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → 𝐺 ∈
𝐿1) |
53 | 51, 52 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (𝐺‘𝑡)) ∈
𝐿1) |
54 | 49, 53, 37 | iblabsnc 33787 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈
𝐿1) |
55 | 39 | adantll 752 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈
ℝ) |
56 | 40 | adantll 752 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(𝐺‘𝑡))) |
57 | 55, 56 | iblpos 23758 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈ 𝐿1
↔ ((𝑡 ∈ ℝ
↦ (abs‘(𝐺‘𝑡))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐺‘𝑡)), 0))) ∈ ℝ))) |
58 | 54, 57 | mpbid 222 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐺‘𝑡)), 0))) ∈ ℝ)) |
59 | 58 | simprd 482 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐺‘𝑡)), 0))) ∈ ℝ) |
60 | 48, 59 | syl5eqelr 2844 |
. . . . . 6
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) ∈ ℝ) |
61 | 60 | 3adant1 1125 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) ∈ ℝ) |
62 | 5 | abscld 14374 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝐹‘𝑡)) ∈ ℝ) |
63 | 5 | absge0d 14382 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(𝐹‘𝑡))) |
64 | | elrege0 12471 |
. . . . . . . 8
⊢
((abs‘(𝐹‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝐹‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝐹‘𝑡)))) |
65 | 62, 63, 64 | sylanbrc 701 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝐹‘𝑡)) ∈ (0[,)+∞)) |
66 | | eqid 2760 |
. . . . . . 7
⊢ (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹‘𝑡))) |
67 | 65, 66 | fmptd 6548 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))):ℝ⟶(0[,)+∞)) |
68 | 67 | 3ad2ant1 1128 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))):ℝ⟶(0[,)+∞)) |
69 | | iftrue 4236 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ,
(abs‘(𝐹‘𝑡)), 0) = (abs‘(𝐹‘𝑡))) |
70 | 69 | mpteq2ia 4892 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ,
(abs‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹‘𝑡))) |
71 | 70 | fveq2i 6355 |
. . . . . . 7
⊢
(∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹‘𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡)))) |
72 | 3 | feqmptd 6411 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 = (𝑡 ∈ ℝ ↦ (𝐹‘𝑡))) |
73 | | i1fibl 23773 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 ∈
𝐿1) |
74 | 72, 73 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (𝐹‘𝑡)) ∈
𝐿1) |
75 | 27 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ dom ∫1
→ abs:ℂ⟶ℝ) |
76 | 75 | feqmptd 6411 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom ∫1
→ abs = (𝑥 ∈
ℂ ↦ (abs‘𝑥))) |
77 | | fveq2 6352 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐹‘𝑡) → (abs‘𝑥) = (abs‘(𝐹‘𝑡))) |
78 | 5, 72, 76, 77 | fmptco 6559 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (abs ∘ 𝐹) =
(𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡)))) |
79 | | i1fmbf 23641 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 ∈
MblFn) |
80 | | ftc1anclem1 33798 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℝ⟶ℝ ∧
𝐹 ∈ MblFn) → (abs
∘ 𝐹) ∈
MblFn) |
81 | 3, 79, 80 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (abs ∘ 𝐹)
∈ MblFn) |
82 | 78, 81 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))) ∈ MblFn) |
83 | 4, 74, 82 | iblabsnc 33787 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))) ∈
𝐿1) |
84 | 62, 63 | iblpos 23758 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ ((𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))) ∈ 𝐿1 ↔
((𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐹‘𝑡)), 0))) ∈ ℝ))) |
85 | 83, 84 | mpbid 222 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ ((𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐹‘𝑡)), 0))) ∈ ℝ)) |
86 | 85 | simprd 482 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹‘𝑡)), 0))) ∈ ℝ) |
87 | 71, 86 | syl5eqelr 2844 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹‘𝑡)))) ∈ ℝ) |
88 | 87 | 3ad2ant1 1128 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(𝐹‘𝑡)))) ∈ ℝ) |
89 | 38, 45, 61, 68, 88 | itg2addnc 33777 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))))) =
((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡)))))) |
90 | 24, 89 | eqtr3d 2796 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡)))) +
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(𝐹‘𝑡)))))) |
91 | 61, 88 | readdcld 10261 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))))) ∈
ℝ) |
92 | 90, 91 | eqeltrd 2839 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) ∈ ℝ) |
93 | | readdcl 10211 |
. . . . . . . . 9
⊢
(((abs‘(𝐺‘𝑡)) ∈ ℝ ∧ (abs‘(𝐹‘𝑡)) ∈ ℝ) → ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ ℝ) |
94 | 39, 62, 93 | syl2anr 496 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) →
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ ℝ) |
95 | 94 | anandirs 909 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ ℝ) |
96 | 95 | rexrd 10281 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈
ℝ*) |
97 | 39 | adantll 752 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈
ℝ) |
98 | 62 | adantlr 753 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐹‘𝑡)) ∈
ℝ) |
99 | 40 | adantll 752 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(𝐺‘𝑡))) |
100 | 63 | adantlr 753 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(𝐹‘𝑡))) |
101 | 97, 98, 99, 100 | addge0d 10795 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
102 | | elxrge0 12474 |
. . . . . 6
⊢
(((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ (0[,]+∞) ↔
(((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ ℝ* ∧ 0 ≤
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
103 | 96, 101, 102 | sylanbrc 701 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ (0[,]+∞)) |
104 | | eqid 2760 |
. . . . 5
⊢ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
105 | 103, 104 | fmptd 6548 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))):ℝ⟶(0[,]+∞)) |
106 | 105 | 3adant2 1126 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))):ℝ⟶(0[,]+∞)) |
107 | | abs2dif2 14272 |
. . . . . . . 8
⊢ (((𝐺‘𝑡) ∈ ℂ ∧ (𝐹‘𝑡) ∈ ℂ) → (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
108 | 2, 5, 107 | syl2anr 496 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
109 | 108 | anandirs 909 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
110 | 109 | ralrimiva 3104 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) →
∀𝑡 ∈ ℝ
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
111 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → ℝ
∈ V) |
112 | | eqidd 2761 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) |
113 | | eqidd 2761 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
114 | 111, 9, 95, 112, 113 | ofrfval2 7080 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) ↔ ∀𝑡 ∈ ℝ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
115 | 110, 114 | mpbird 247 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
116 | 115 | 3adant2 1126 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
117 | | itg2le 23705 |
. . 3
⊢ (((𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))))) |
118 | 16, 106, 116, 117 | syl3anc 1477 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))))) |
119 | | itg2lecl 23704 |
. 2
⊢ (((𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ∈ ℝ) |
120 | 16, 92, 118, 119 | syl3anc 1477 |
1
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ∈ ℝ) |