Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem3 Structured version   Visualization version   GIF version

Theorem ftc1anclem3 33798
Description: Lemma for ftc1anc 33804- the absolute value of the sum of a simple function and i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018.)
Assertion
Ref Expression
ftc1anclem3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹𝑓 + ((ℝ × {i}) ∘𝑓 · 𝐺))) ∈ dom ∫1)

Proof of Theorem ftc1anclem3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 23640 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21ffvelrnda 6520 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3 i1ff 23640 . . . . . . . 8 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
43ffvelrnda 6520 . . . . . . 7 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
5 absreim 14230 . . . . . . 7 (((𝐹𝑥) ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
62, 4, 5syl2an 495 . . . . . 6 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
76anandirs 909 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
82recnd 10258 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
98sqvald 13197 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥)↑2) = ((𝐹𝑥) · (𝐹𝑥)))
104recnd 10258 . . . . . . . . 9 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
1110sqvald 13197 . . . . . . . 8 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐺𝑥)↑2) = ((𝐺𝑥) · (𝐺𝑥)))
129, 11oveqan12d 6830 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (((𝐹𝑥)↑2) + ((𝐺𝑥)↑2)) = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))
1312anandirs 909 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥)↑2) + ((𝐺𝑥)↑2)) = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))
1413fveq2d 6354 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
157, 14eqtrd 2792 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
1615mpteq2dva 4894 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝐹𝑥) + (i · (𝐺𝑥))))) = (𝑥 ∈ ℝ ↦ (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))))
17 ax-icn 10185 . . . . . . 7 i ∈ ℂ
18 mulcl 10210 . . . . . . 7 ((i ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) → (i · (𝐺𝑥)) ∈ ℂ)
1917, 10, 18sylancr 698 . . . . . 6 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (i · (𝐺𝑥)) ∈ ℂ)
20 addcl 10208 . . . . . 6 (((𝐹𝑥) ∈ ℂ ∧ (i · (𝐺𝑥)) ∈ ℂ) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
218, 19, 20syl2an 495 . . . . 5 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
2221anandirs 909 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
23 reex 10217 . . . . . 6 ℝ ∈ V
2423a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ℝ ∈ V)
252adantlr 753 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
26 ovexd 6841 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (i · (𝐺𝑥)) ∈ V)
271feqmptd 6409 . . . . . 6 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
2827adantr 472 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
2923a1i 11 . . . . . . 7 (𝐺 ∈ dom ∫1 → ℝ ∈ V)
3017a1i 11 . . . . . . 7 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → i ∈ ℂ)
31 fconstmpt 5318 . . . . . . . 8 (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)
3231a1i 11 . . . . . . 7 (𝐺 ∈ dom ∫1 → (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i))
333feqmptd 6409 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺 = (𝑥 ∈ ℝ ↦ (𝐺𝑥)))
3429, 30, 4, 32, 33offval2 7077 . . . . . 6 (𝐺 ∈ dom ∫1 → ((ℝ × {i}) ∘𝑓 · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺𝑥))))
3534adantl 473 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((ℝ × {i}) ∘𝑓 · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺𝑥))))
3624, 25, 26, 28, 35offval2 7077 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹𝑓 + ((ℝ × {i}) ∘𝑓 · 𝐺)) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) + (i · (𝐺𝑥)))))
37 absf 14274 . . . . . 6 abs:ℂ⟶ℝ
3837a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → abs:ℂ⟶ℝ)
3938feqmptd 6409 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → abs = (𝑦 ∈ ℂ ↦ (abs‘𝑦)))
40 fveq2 6350 . . . 4 (𝑦 = ((𝐹𝑥) + (i · (𝐺𝑥))) → (abs‘𝑦) = (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))))
4122, 36, 39, 40fmptco 6557 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹𝑓 + ((ℝ × {i}) ∘𝑓 · 𝐺))) = (𝑥 ∈ ℝ ↦ (abs‘((𝐹𝑥) + (i · (𝐺𝑥))))))
428, 8mulcld 10250 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ)
4310, 10mulcld 10250 . . . . . 6 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ)
44 addcl 10208 . . . . . 6 ((((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ ∧ ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4542, 43, 44syl2an 495 . . . . 5 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4645anandirs 909 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4742adantlr 753 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ)
4843adantll 752 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ)
4923a1i 11 . . . . . . 7 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
5049, 2, 2, 27, 27offval2 7077 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹𝑓 · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) · (𝐹𝑥))))
5150adantr 472 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹𝑓 · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) · (𝐹𝑥))))
5229, 4, 4, 33, 33offval2 7077 . . . . . 6 (𝐺 ∈ dom ∫1 → (𝐺𝑓 · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺𝑥) · (𝐺𝑥))))
5352adantl 473 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺𝑓 · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺𝑥) · (𝐺𝑥))))
5424, 47, 48, 51, 53offval2 7077 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) = (𝑥 ∈ ℝ ↦ (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
55 sqrtf 14300 . . . . . 6 √:ℂ⟶ℂ
5655a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → √:ℂ⟶ℂ)
5756feqmptd 6409 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → √ = (𝑦 ∈ ℂ ↦ (√‘𝑦)))
58 fveq2 6350 . . . 4 (𝑦 = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) → (√‘𝑦) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
5946, 54, 57, 58fmptco 6557 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) = (𝑥 ∈ ℝ ↦ (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))))
6016, 41, 593eqtr4d 2802 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹𝑓 + ((ℝ × {i}) ∘𝑓 · 𝐺))) = (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))))
61 elrege0 12469 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
62 resqrtcl 14191 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ ℝ)
6361, 62sylbi 207 . . . . . 6 (𝑥 ∈ (0[,)+∞) → (√‘𝑥) ∈ ℝ)
6463adantl 473 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (0[,)+∞)) → (√‘𝑥) ∈ ℝ)
65 id 22 . . . . . . . . 9 (√:ℂ⟶ℂ → √:ℂ⟶ℂ)
6665feqmptd 6409 . . . . . . . 8 (√:ℂ⟶ℂ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥)))
6755, 66ax-mp 5 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (√‘𝑥))
6867reseq1i 5545 . . . . . 6 (√ ↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞))
69 rge0ssre 12471 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
70 ax-resscn 10183 . . . . . . . 8 ℝ ⊆ ℂ
7169, 70sstri 3751 . . . . . . 7 (0[,)+∞) ⊆ ℂ
72 resmpt 5605 . . . . . . 7 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)))
7371, 72ax-mp 5 . . . . . 6 ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
7468, 73eqtri 2780 . . . . 5 (√ ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
7564, 74fmptd 6546 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ)
76 ge0addcl 12475 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
7776adantl 473 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
78 oveq12 6820 . . . . . . . . 9 ((𝑧 = 𝐹𝑧 = 𝐹) → (𝑧𝑓 · 𝑧) = (𝐹𝑓 · 𝐹))
7978anidms 680 . . . . . . . 8 (𝑧 = 𝐹 → (𝑧𝑓 · 𝑧) = (𝐹𝑓 · 𝐹))
8079feq1d 6189 . . . . . . 7 (𝑧 = 𝐹 → ((𝑧𝑓 · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝐹𝑓 · 𝐹):ℝ⟶(0[,)+∞)))
81 i1ff 23640 . . . . . . . . . . . 12 (𝑧 ∈ dom ∫1𝑧:ℝ⟶ℝ)
8281ffvelrnda 6520 . . . . . . . . . . 11 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑧𝑥) ∈ ℝ)
8382, 82remulcld 10260 . . . . . . . . . 10 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑧𝑥) · (𝑧𝑥)) ∈ ℝ)
8482msqge0d 10786 . . . . . . . . . 10 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ ((𝑧𝑥) · (𝑧𝑥)))
85 elrege0 12469 . . . . . . . . . 10 (((𝑧𝑥) · (𝑧𝑥)) ∈ (0[,)+∞) ↔ (((𝑧𝑥) · (𝑧𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑧𝑥) · (𝑧𝑥))))
8683, 84, 85sylanbrc 701 . . . . . . . . 9 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑧𝑥) · (𝑧𝑥)) ∈ (0[,)+∞))
87 eqid 2758 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))) = (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥)))
8886, 87fmptd 6546 . . . . . . . 8 (𝑧 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))):ℝ⟶(0[,)+∞))
8923a1i 11 . . . . . . . . . 10 (𝑧 ∈ dom ∫1 → ℝ ∈ V)
9081feqmptd 6409 . . . . . . . . . 10 (𝑧 ∈ dom ∫1𝑧 = (𝑥 ∈ ℝ ↦ (𝑧𝑥)))
9189, 82, 82, 90, 90offval2 7077 . . . . . . . . 9 (𝑧 ∈ dom ∫1 → (𝑧𝑓 · 𝑧) = (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))))
9291feq1d 6189 . . . . . . . 8 (𝑧 ∈ dom ∫1 → ((𝑧𝑓 · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))):ℝ⟶(0[,)+∞)))
9388, 92mpbird 247 . . . . . . 7 (𝑧 ∈ dom ∫1 → (𝑧𝑓 · 𝑧):ℝ⟶(0[,)+∞))
9480, 93vtoclga 3410 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹𝑓 · 𝐹):ℝ⟶(0[,)+∞))
9594adantr 472 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹𝑓 · 𝐹):ℝ⟶(0[,)+∞))
96 oveq12 6820 . . . . . . . . 9 ((𝑧 = 𝐺𝑧 = 𝐺) → (𝑧𝑓 · 𝑧) = (𝐺𝑓 · 𝐺))
9796anidms 680 . . . . . . . 8 (𝑧 = 𝐺 → (𝑧𝑓 · 𝑧) = (𝐺𝑓 · 𝐺))
9897feq1d 6189 . . . . . . 7 (𝑧 = 𝐺 → ((𝑧𝑓 · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝐺𝑓 · 𝐺):ℝ⟶(0[,)+∞)))
9998, 93vtoclga 3410 . . . . . 6 (𝐺 ∈ dom ∫1 → (𝐺𝑓 · 𝐺):ℝ⟶(0[,)+∞))
10099adantl 473 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺𝑓 · 𝐺):ℝ⟶(0[,)+∞))
101 inidm 3963 . . . . 5 (ℝ ∩ ℝ) = ℝ
10277, 95, 100, 24, 24, 101off 7075 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)):ℝ⟶(0[,)+∞))
103 fco2 6218 . . . 4 (((√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ ∧ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)):ℝ⟶(0[,)+∞)) → (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))):ℝ⟶ℝ)
10475, 102, 103syl2anc 696 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))):ℝ⟶ℝ)
105 rnco 5800 . . . 4 ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) = ran (√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)))
106 ffn 6204 . . . . . . . 8 (√:ℂ⟶ℂ → √ Fn ℂ)
10755, 106ax-mp 5 . . . . . . 7 √ Fn ℂ
108 readdcl 10209 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
109108adantl 473 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
110 remulcl 10211 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
111110adantl 473 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
112111, 1, 1, 49, 49, 101off 7075 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹𝑓 · 𝐹):ℝ⟶ℝ)
113112adantr 472 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹𝑓 · 𝐹):ℝ⟶ℝ)
114110adantl 473 . . . . . . . . . . . 12 ((𝐺 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
115114, 3, 3, 29, 29, 101off 7075 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺𝑓 · 𝐺):ℝ⟶ℝ)
116115adantl 473 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺𝑓 · 𝐺):ℝ⟶ℝ)
117109, 113, 116, 24, 24, 101off 7075 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)):ℝ⟶ℝ)
118 frn 6212 . . . . . . . . 9 (((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)):ℝ⟶ℝ → ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ⊆ ℝ)
119117, 118syl 17 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ⊆ ℝ)
120119, 70syl6ss 3754 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ⊆ ℂ)
121 fnssres 6163 . . . . . . 7 ((√ Fn ℂ ∧ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ⊆ ℂ) → (√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) Fn ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)))
122107, 120, 121sylancr 698 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) Fn ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)))
123 id 22 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
124123, 123i1fmul 23660 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝐹𝑓 · 𝐹) ∈ dom ∫1)
125124adantr 472 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹𝑓 · 𝐹) ∈ dom ∫1)
126 id 22 . . . . . . . . . 10 (𝐺 ∈ dom ∫1𝐺 ∈ dom ∫1)
127126, 126i1fmul 23660 . . . . . . . . 9 (𝐺 ∈ dom ∫1 → (𝐺𝑓 · 𝐺) ∈ dom ∫1)
128127adantl 473 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺𝑓 · 𝐺) ∈ dom ∫1)
129125, 128i1fadd 23659 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∈ dom ∫1)
130 i1frn 23641 . . . . . . 7 (((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∈ dom ∫1 → ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∈ Fin)
131129, 130syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∈ Fin)
132 fnfi 8401 . . . . . 6 (((√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) Fn ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∧ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∈ Fin) → (√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∈ Fin)
133122, 131, 132syl2anc 696 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∈ Fin)
134 rnfi 8412 . . . . 5 ((√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∈ Fin → ran (√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∈ Fin)
135133, 134syl 17 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran (√ ↾ ran ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∈ Fin)
136105, 135syl5eqel 2841 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∈ Fin)
137 cnvco 5461 . . . . . . 7 (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) = (((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∘ √)
138137imaeq1i 5619 . . . . . 6 ((√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) “ {𝑥}) = ((((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∘ √) “ {𝑥})
139 imaco 5799 . . . . . 6 ((((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∘ √) “ {𝑥}) = (((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) “ (√ “ {𝑥}))
140138, 139eqtri 2780 . . . . 5 ((√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) “ {𝑥}) = (((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) “ (√ “ {𝑥}))
141 i1fima 23642 . . . . . 6 (((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∈ dom ∫1 → (((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) “ (√ “ {𝑥})) ∈ dom vol)
142129, 141syl 17 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) “ (√ “ {𝑥})) ∈ dom vol)
143140, 142syl5eqel 2841 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) “ {𝑥}) ∈ dom vol)
144143adantr 472 . . 3 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∖ {0})) → ((√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) “ {𝑥}) ∈ dom vol)
145140fveq2i 6353 . . . 4 (vol‘((√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) “ {𝑥})) = (vol‘(((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) “ (√ “ {𝑥})))
146 eldifsni 4464 . . . . . . . 8 (𝑥 ∈ (ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∖ {0}) → 𝑥 ≠ 0)
147 c0ex 10224 . . . . . . . . . . . 12 0 ∈ V
148147elsn 4334 . . . . . . . . . . 11 (0 ∈ {𝑥} ↔ 0 = 𝑥)
149 eqcom 2765 . . . . . . . . . . 11 (0 = 𝑥𝑥 = 0)
150148, 149bitri 264 . . . . . . . . . 10 (0 ∈ {𝑥} ↔ 𝑥 = 0)
151150necon3bbii 2977 . . . . . . . . 9 (¬ 0 ∈ {𝑥} ↔ 𝑥 ≠ 0)
152 sqrt0 14179 . . . . . . . . . 10 (√‘0) = 0
153152eleq1i 2828 . . . . . . . . 9 ((√‘0) ∈ {𝑥} ↔ 0 ∈ {𝑥})
154151, 153xchnxbir 322 . . . . . . . 8 (¬ (√‘0) ∈ {𝑥} ↔ 𝑥 ≠ 0)
155146, 154sylibr 224 . . . . . . 7 (𝑥 ∈ (ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∖ {0}) → ¬ (√‘0) ∈ {𝑥})
156155olcd 407 . . . . . 6 (𝑥 ∈ (ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∖ {0}) → (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
157 ianor 510 . . . . . . 7 (¬ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
158 elpreima 6498 . . . . . . . 8 (√ Fn ℂ → (0 ∈ (√ “ {𝑥}) ↔ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥})))
15955, 106, 158mp2b 10 . . . . . . 7 (0 ∈ (√ “ {𝑥}) ↔ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥}))
160157, 159xchnxbir 322 . . . . . 6 (¬ 0 ∈ (√ “ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
161156, 160sylibr 224 . . . . 5 (𝑥 ∈ (ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∖ {0}) → ¬ 0 ∈ (√ “ {𝑥}))
162 i1fima2 23643 . . . . 5 ((((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) ∈ dom ∫1 ∧ ¬ 0 ∈ (√ “ {𝑥})) → (vol‘(((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) “ (√ “ {𝑥}))) ∈ ℝ)
163129, 161, 162syl2an 495 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∖ {0})) → (vol‘(((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺)) “ (√ “ {𝑥}))) ∈ ℝ)
164145, 163syl5eqel 2841 . . 3 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∖ {0})) → (vol‘((√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) “ {𝑥})) ∈ ℝ)
165104, 136, 144, 164i1fd 23645 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹𝑓 · 𝐹) ∘𝑓 + (𝐺𝑓 · 𝐺))) ∈ dom ∫1)
16660, 165eqeltrd 2837 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹𝑓 + ((ℝ × {i}) ∘𝑓 · 𝐺))) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1630  wcel 2137  wne 2930  Vcvv 3338  cdif 3710  wss 3713  {csn 4319   class class class wbr 4802  cmpt 4879   × cxp 5262  ccnv 5263  dom cdm 5264  ran crn 5265  cres 5266  cima 5267  ccom 5268   Fn wfn 6042  wf 6043  cfv 6047  (class class class)co 6811  𝑓 cof 7058  Fincfn 8119  cc 10124  cr 10125  0cc0 10126  ici 10128   + caddc 10129   · cmul 10131  +∞cpnf 10261  cle 10265  2c2 11260  [,)cico 12368  cexp 13052  csqrt 14170  abscabs 14171  volcvol 23430  1citg1 23581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-of 7060  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-2o 7728  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-sup 8511  df-inf 8512  df-oi 8578  df-card 8953  df-cda 9180  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-n0 11483  df-z 11568  df-uz 11878  df-q 11980  df-rp 12024  df-xadd 12138  df-ioo 12370  df-ico 12372  df-icc 12373  df-fz 12518  df-fzo 12658  df-fl 12785  df-seq 12994  df-exp 13053  df-hash 13310  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-clim 14416  df-sum 14614  df-xmet 19939  df-met 19940  df-ovol 23431  df-vol 23432  df-mbf 23585  df-itg1 23586
This theorem is referenced by:  ftc1anclem7  33802  ftc1anclem8  33803
  Copyright terms: Public domain W3C validator