Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem1 Structured version   Visualization version   GIF version

Theorem ftc1anclem1 33816
Description: Lemma for ftc1anc 33824- the absolute value of a real-valued measurable function is measurable. Would be trivial with cncombf 23644, but this proof avoids ax-cc 9469. (Contributed by Brendan Leahy, 18-Jun-2018.)
Assertion
Ref Expression
ftc1anclem1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)

Proof of Theorem ftc1anclem1
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6521 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ)
21recnd 10280 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
3 id 22 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
43feqmptd 6412 . . . 4 (𝐹:𝐴⟶ℝ → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
5 absf 14296 . . . . . 6 abs:ℂ⟶ℝ
65a1i 11 . . . . 5 (𝐹:𝐴⟶ℝ → abs:ℂ⟶ℝ)
76feqmptd 6412 . . . 4 (𝐹:𝐴⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
8 fveq2 6353 . . . 4 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
92, 4, 7, 8fmptco 6560 . . 3 (𝐹:𝐴⟶ℝ → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
109adantr 472 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡))))
112abscld 14394 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (abs‘(𝐹𝑡)) ∈ ℝ)
12 eqid 2760 . . . . 5 (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) = (𝑡𝐴 ↦ (abs‘(𝐹𝑡)))
1311, 12fmptd 6549 . . . 4 (𝐹:𝐴⟶ℝ → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
1413adantr 472 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))):𝐴⟶ℝ)
15 fdm 6212 . . . . 5 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
1615adantr 472 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 = 𝐴)
17 mbfdm 23614 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
1817adantl 473 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → dom 𝐹 ∈ dom vol)
1916, 18eqeltrrd 2840 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → 𝐴 ∈ dom vol)
20 rexr 10297 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21 elioopnf 12480 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2220, 21syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2311biantrurd 530 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡)))))
2423bicomd 213 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 < (abs‘(𝐹𝑡))) ↔ 𝑥 < (abs‘(𝐹𝑡))))
2522, 24sylan9bbr 739 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ 𝑥 < (abs‘(𝐹𝑡))))
26 ltnle 10329 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2726ancoms 468 . . . . . . . . . . . 12 (((abs‘(𝐹𝑡)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
2811, 27sylan 489 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (abs‘(𝐹𝑡)) ↔ ¬ (abs‘(𝐹𝑡)) ≤ 𝑥))
29 absle 14274 . . . . . . . . . . . . . . 15 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
301, 29sylan 489 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥)))
31 renegcl 10556 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
32 lenlt 10328 . . . . . . . . . . . . . . . . 17 ((-𝑥 ∈ ℝ ∧ (𝐹𝑡) ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
3331, 1, 32syl2anr 496 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) < -𝑥))
341biantrurd 530 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((𝐹𝑡) < -𝑥 ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3531rexrd 10301 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ*)
36 elioomnf 12481 . . . . . . . . . . . . . . . . . . . 20 (-𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (-∞(,)-𝑥) ↔ ((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥)))
3837bicomd 213 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ (𝐹𝑡) < -𝑥) ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
3934, 38sylan9bb 738 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) < -𝑥 ↔ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
4039notbid 307 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑡) < -𝑥 ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
4133, 40bitrd 268 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (-𝑥 ≤ (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (-∞(,)-𝑥)))
42 lenlt 10328 . . . . . . . . . . . . . . . . 17 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
431, 42sylan 489 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ 𝑥 < (𝐹𝑡)))
441biantrurd 530 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝑥 < (𝐹𝑡) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
45 elioopnf 12480 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4620, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ((𝐹𝑡) ∈ (𝑥(,)+∞) ↔ ((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡))))
4746bicomd 213 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (((𝐹𝑡) ∈ ℝ ∧ 𝑥 < (𝐹𝑡)) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4844, 47sylan9bb 738 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < (𝐹𝑡) ↔ (𝐹𝑡) ∈ (𝑥(,)+∞)))
4948notbid 307 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < (𝐹𝑡) ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5043, 49bitrd 268 . . . . . . . . . . . . . . 15 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ≤ 𝑥 ↔ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5141, 50anbi12d 749 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((-𝑥 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 𝑥) ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5230, 51bitrd 268 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
5352notbid 307 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞))))
54 elun 3896 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)))
55 oran 518 . . . . . . . . . . . . 13 (((𝐹𝑡) ∈ (-∞(,)-𝑥) ∨ (𝐹𝑡) ∈ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5654, 55bitri 264 . . . . . . . . . . . 12 ((𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞)) ↔ ¬ (¬ (𝐹𝑡) ∈ (-∞(,)-𝑥) ∧ ¬ (𝐹𝑡) ∈ (𝑥(,)+∞)))
5753, 56syl6bbr 278 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → (¬ (abs‘(𝐹𝑡)) ≤ 𝑥 ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5825, 28, 573bitrd 294 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
5958an32s 881 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞) ↔ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
6059rabbidva 3328 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))})
6112mptpreima 5789 . . . . . . . 8 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (𝑥(,)+∞)}
62 eqid 2760 . . . . . . . . 9 (𝑡𝐴 ↦ (𝐹𝑡)) = (𝑡𝐴 ↦ (𝐹𝑡))
6362mptpreima 5789 . . . . . . . 8 ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))}
6460, 61, 633eqtr4g 2819 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
65 simpl 474 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ)
6665feqmptd 6412 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6766cnveqd 5453 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → 𝐹 = (𝑡𝐴 ↦ (𝐹𝑡)))
6867imaeq1d 5623 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
6964, 68eqtr4d 2797 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))))
70 imaundi 5703 . . . . . 6 (𝐹 “ ((-∞(,)-𝑥) ∪ (𝑥(,)+∞))) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞)))
7169, 70syl6eq 2810 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
7271adantlr 753 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) = ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))))
73 mbfima 23618 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-∞(,)-𝑥)) ∈ dom vol)
74 mbfima 23618 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
75 unmbl 23525 . . . . . . 7 (((𝐹 “ (-∞(,)-𝑥)) ∈ dom vol ∧ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7673, 74, 75syl2anc 696 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7776ancoms 468 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7877adantr 472 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝐹 “ (-∞(,)-𝑥)) ∪ (𝐹 “ (𝑥(,)+∞))) ∈ dom vol)
7972, 78eqeltrd 2839 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
80 abslt 14273 . . . . . . . . . . 11 (((𝐹𝑡) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
811, 80sylan 489 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
82 elioomnf 12481 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8320, 82syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8411biantrurd 530 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) < 𝑥 ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥)))
8584bicomd 213 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (((abs‘(𝐹𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) < 𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8683, 85sylan9bbr 739 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (abs‘(𝐹𝑡)) < 𝑥))
8735, 20jca 555 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (-𝑥 ∈ ℝ*𝑥 ∈ ℝ*))
881rexrd 10301 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) → (𝐹𝑡) ∈ ℝ*)
89 elioo5 12444 . . . . . . . . . . . 12 ((-𝑥 ∈ ℝ*𝑥 ∈ ℝ* ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
90893expa 1112 . . . . . . . . . . 11 (((-𝑥 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝐹𝑡) ∈ ℝ*) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9187, 88, 90syl2anr 496 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑡) ∈ (-𝑥(,)𝑥) ↔ (-𝑥 < (𝐹𝑡) ∧ (𝐹𝑡) < 𝑥)))
9281, 86, 913bitr4d 300 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝑡𝐴) ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9392an32s 881 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑡𝐴) → ((abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥) ↔ (𝐹𝑡) ∈ (-𝑥(,)𝑥)))
9493rabbidva 3328 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)} = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)})
9512mptpreima 5789 . . . . . . 7 ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = {𝑡𝐴 ∣ (abs‘(𝐹𝑡)) ∈ (-∞(,)𝑥)}
9662mptpreima 5789 . . . . . . 7 ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)) = {𝑡𝐴 ∣ (𝐹𝑡) ∈ (-𝑥(,)𝑥)}
9794, 95, 963eqtr4g 2819 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9867imaeq1d 5623 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) = ((𝑡𝐴 ↦ (𝐹𝑡)) “ (-𝑥(,)𝑥)))
9997, 98eqtr4d 2797 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
10099adantlr 753 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) = (𝐹 “ (-𝑥(,)𝑥)))
101 mbfima 23618 . . . . . 6 ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
102101ancoms 468 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
103102adantr 472 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → (𝐹 “ (-𝑥(,)𝑥)) ∈ dom vol)
104100, 103eqeltrd 2839 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) ∧ 𝑥 ∈ ℝ) → ((𝑡𝐴 ↦ (abs‘(𝐹𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
10514, 19, 79, 104ismbf2d 23627 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (𝑡𝐴 ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
10610, 105eqeltrd 2839 1 ((𝐹:𝐴⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  {crab 3054  cun 3713   class class class wbr 4804  cmpt 4881  ccnv 5265  dom cdm 5266  cima 5269  ccom 5270  wf 6045  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  +∞cpnf 10283  -∞cmnf 10284  *cxr 10285   < clt 10286  cle 10287  -cneg 10479  (,)cioo 12388  abscabs 14193  volcvol 23452  MblFncmbf 23602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xadd 12160  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-xmet 19961  df-met 19962  df-ovol 23453  df-vol 23454  df-mbf 23607
This theorem is referenced by:  ftc1anclem2  33817  ftc1anclem4  33819  ftc1anclem5  33820  ftc1anclem6  33821  ftc1anclem8  33823
  Copyright terms: Public domain W3C validator