MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem5 Structured version   Visualization version   GIF version

Theorem ftalem5 24848
Description: Lemma for fta 24851: Main proof. We have already shifted the minimum found in ftalem3 24846 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let 𝐾 be the lowest term in the polynomial that is nonzero, and let 𝑇 be a 𝐾-th root of -𝐹(0) / 𝐴(𝐾). Then an evaluation of 𝐹(𝑇𝑋) where 𝑋 is a sufficiently small positive number yields 𝐹(0) for the first term and -𝐹(0) · 𝑋𝐾 for the 𝐾-th term, and all higher terms are bounded because 𝑋 is small. Thus, abs(𝐹(𝑇𝑋)) ≤ abs(𝐹(0))(1 − 𝑋𝐾) < abs(𝐹(0)), in contradiction to our choice of 𝐹(0) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem4.5 (𝜑 → (𝐹‘0) ≠ 0)
ftalem4.6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
ftalem4.7 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
ftalem4.8 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
ftalem4.9 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
Assertion
Ref Expression
ftalem5 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Distinct variable groups:   𝑘,𝑛,𝑥,𝐴   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛,𝑥   𝑘,𝐹,𝑛,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑥   𝑥,𝑈   𝑘,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑥,𝑛)   𝑇(𝑛)   𝑈(𝑘,𝑛)   𝐾(𝑥)

Proof of Theorem ftalem5
StepHypRef Expression
1 ftalem.1 . . . . . 6 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . . . . 6 𝑁 = (deg‘𝐹)
3 ftalem.3 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . . . . 6 (𝜑𝑁 ∈ ℕ)
5 ftalem4.5 . . . . . 6 (𝜑 → (𝐹‘0) ≠ 0)
6 ftalem4.6 . . . . . 6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
7 ftalem4.7 . . . . . 6 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
8 ftalem4.8 . . . . . 6 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
9 ftalem4.9 . . . . . 6 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
101, 2, 3, 4, 5, 6, 7, 8, 9ftalem4 24847 . . . . 5 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
1110simprd 478 . . . 4 (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+))
1211simp1d 1093 . . 3 (𝜑𝑇 ∈ ℂ)
1311simp3d 1095 . . . . 5 (𝜑𝑋 ∈ ℝ+)
1413rpred 11910 . . . 4 (𝜑𝑋 ∈ ℝ)
1514recnd 10106 . . 3 (𝜑𝑋 ∈ ℂ)
1612, 15mulcld 10098 . 2 (𝜑 → (𝑇 · 𝑋) ∈ ℂ)
17 plyf 23999 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
183, 17syl 17 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1918, 16ffvelrnd 6400 . . . 4 (𝜑 → (𝐹‘(𝑇 · 𝑋)) ∈ ℂ)
2019abscld 14219 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ∈ ℝ)
21 0cn 10070 . . . . . . 7 0 ∈ ℂ
22 ffvelrn 6397 . . . . . . 7 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
2318, 21, 22sylancl 695 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℂ)
2423abscld 14219 . . . . 5 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
2510simpld 474 . . . . . . . . 9 (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
2625simpld 474 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
2726nnnn0d 11389 . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
2814, 27reexpcld 13065 . . . . . 6 (𝜑 → (𝑋𝐾) ∈ ℝ)
2924, 28remulcld 10108 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) · (𝑋𝐾)) ∈ ℝ)
3024, 29resubcld 10496 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) ∈ ℝ)
31 fzfid 12812 . . . . . 6 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
32 peano2nn0 11371 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3327, 32syl 17 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℕ0)
34 elfzuz 12376 . . . . . . . . 9 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
35 eluznn0 11795 . . . . . . . . 9 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ0)
3633, 34, 35syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0)
371coef3 24033 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
383, 37syl 17 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
39 ffvelrn 6397 . . . . . . . . 9 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4038, 39sylan 487 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4136, 40syldan 486 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴𝑘) ∈ ℂ)
4216adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇 · 𝑋) ∈ ℂ)
4342, 36expcld 13048 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
4441, 43mulcld 10098 . . . . . 6 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4531, 44fsumcl 14508 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4645abscld 14219 . . . 4 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
4730, 46readdcld 10107 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ∈ ℝ)
48 fzfid 12812 . . . . . 6 (𝜑 → (0...𝐾) ∈ Fin)
49 elfznn0 12471 . . . . . . . 8 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
5038, 49, 39syl2an 493 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → (𝐴𝑘) ∈ ℂ)
51 expcl 12918 . . . . . . . 8 (((𝑇 · 𝑋) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5216, 49, 51syl2an 493 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5350, 52mulcld 10098 . . . . . 6 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5448, 53fsumcl 14508 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5554, 45abstrid 14239 . . . 4 (𝜑 → (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ≤ ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
561, 2coeid2 24040 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑇 · 𝑋) ∈ ℂ) → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
573, 16, 56syl2anc 694 . . . . . 6 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
5826nnred 11073 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5958ltp1d 10992 . . . . . . . 8 (𝜑𝐾 < (𝐾 + 1))
60 fzdisj 12406 . . . . . . . 8 (𝐾 < (𝐾 + 1) → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
6159, 60syl 17 . . . . . . 7 (𝜑 → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
62 ssrab2 3720 . . . . . . . . . . . 12 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℕ
63 nnuz 11761 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6462, 63sseqtri 3670 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1)
654nnne0d 11103 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
662, 1dgreq0 24066 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
673, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
68 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
69 dgr0 24063 . . . . . . . . . . . . . . . . 17 (deg‘0𝑝) = 0
7068, 69syl6eq 2701 . . . . . . . . . . . . . . . 16 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
712, 70syl5eq 2697 . . . . . . . . . . . . . . 15 (𝐹 = 0𝑝𝑁 = 0)
7267, 71syl6bir 244 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
7372necon3d 2844 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
7465, 73mpd 15 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ≠ 0)
75 fveq2 6229 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
7675neeq1d 2882 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑁) ≠ 0))
7776elrab 3396 . . . . . . . . . . . 12 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝑁 ∈ ℕ ∧ (𝐴𝑁) ≠ 0))
784, 74, 77sylanbrc 699 . . . . . . . . . . 11 (𝜑𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
79 infssuzle 11809 . . . . . . . . . . 11 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
8064, 78, 79sylancr 696 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
816, 80syl5eqbr 4720 . . . . . . . . 9 (𝜑𝐾𝑁)
82 nn0uz 11760 . . . . . . . . . . 11 0 = (ℤ‘0)
8327, 82syl6eleq 2740 . . . . . . . . . 10 (𝜑𝐾 ∈ (ℤ‘0))
844nnzd 11519 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
85 elfz5 12372 . . . . . . . . . 10 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8683, 84, 85syl2anc 694 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8781, 86mpbird 247 . . . . . . . 8 (𝜑𝐾 ∈ (0...𝑁))
88 fzsplit 12405 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
8987, 88syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
90 fzfid 12812 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
91 elfznn0 12471 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9238, 91, 39syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9316, 91, 51syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
9492, 93mulcld 10098 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
9561, 89, 90, 94fsumsplit 14515 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9657, 95eqtrd 2685 . . . . 5 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9796fveq2d 6233 . . . 4 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) = (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
981coefv0 24049 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
993, 98syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) = (𝐴‘0))
10099eqcomd 2657 . . . . . . . . . . 11 (𝜑 → (𝐴‘0) = (𝐹‘0))
10116exp0d 13042 . . . . . . . . . . 11 (𝜑 → ((𝑇 · 𝑋)↑0) = 1)
102100, 101oveq12d 6708 . . . . . . . . . 10 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = ((𝐹‘0) · 1))
10323mulid1d 10095 . . . . . . . . . 10 (𝜑 → ((𝐹‘0) · 1) = (𝐹‘0))
104102, 103eqtrd 2685 . . . . . . . . 9 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = (𝐹‘0))
105 1e0p1 11590 . . . . . . . . . . . . 13 1 = (0 + 1)
106105oveq1i 6700 . . . . . . . . . . . 12 (1...𝐾) = ((0 + 1)...𝐾)
107106sumeq1i 14472 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))
10826, 63syl6eleq 2740 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘1))
109 elfznn 12408 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ)
110109nnnn0d 11389 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ0)
11138, 110, 39syl2an 493 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → (𝐴𝑘) ∈ ℂ)
11216, 110, 51syl2an 493 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
113111, 112mulcld 10098 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
114 fveq2 6229 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (𝐴𝑘) = (𝐴𝐾))
115 oveq2 6698 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑𝐾))
116114, 115oveq12d 6708 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)))
117108, 113, 116fsumm1 14524 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
118107, 117syl5eqr 2699 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
119 elfznn 12408 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ)
120119adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℕ)
121120nnred 11073 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℝ)
12258adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℝ)
123 peano2rem 10386 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
124122, 123syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
125 elfzle2 12383 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
126125adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
127122ltm1d 10994 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) < 𝐾)
128121, 124, 122, 126, 127lelttrd 10233 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 < 𝐾)
129121, 122ltnled 10222 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 < 𝐾 ↔ ¬ 𝐾𝑘))
130128, 129mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝐾𝑘)
131 infssuzle 11809 . . . . . . . . . . . . . . . . . . 19 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑘)
1326, 131syl5eqbr 4720 . . . . . . . . . . . . . . . . . 18 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → 𝐾𝑘)
13364, 132mpan 706 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → 𝐾𝑘)
134130, 133nsyl 135 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
135 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
136135neeq1d 2882 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
137136elrab3 3397 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
138120, 137syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
139138necon2bbid 2866 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) = 0 ↔ ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}))
140134, 139mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐴𝑘) = 0)
141140oveq1d 6705 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (0 · ((𝑇 · 𝑋)↑𝑘)))
142119nnnn0d 11389 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
14316, 142, 51syl2an 493 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
144143mul02d 10272 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (0 · ((𝑇 · 𝑋)↑𝑘)) = 0)
145141, 144eqtrd 2685 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
146145sumeq2dv 14477 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ (1...(𝐾 − 1))0)
147 fzfi 12811 . . . . . . . . . . . . . 14 (1...(𝐾 − 1)) ∈ Fin
148147olci 405 . . . . . . . . . . . . 13 ((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin)
149 sumz 14497 . . . . . . . . . . . . 13 (((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin) → Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0)
150148, 149ax-mp 5 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0
151146, 150syl6eq 2701 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
15212, 15, 27mulexpd 13063 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 · 𝑋)↑𝐾) = ((𝑇𝐾) · (𝑋𝐾)))
153152oveq2d 6706 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
15438, 27ffvelrnd 6400 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐾) ∈ ℂ)
15512, 27expcld 13048 . . . . . . . . . . . . . 14 (𝜑 → (𝑇𝐾) ∈ ℂ)
15628recnd 10106 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝐾) ∈ ℂ)
157154, 155, 156mulassd 10101 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
158153, 157eqtr4d 2688 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)))
1597oveq1i 6700 . . . . . . . . . . . . . . . 16 (𝑇𝐾) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾)
16058recnd 10106 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℂ)
16126nnne0d 11103 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≠ 0)
162160, 161recid2d 10835 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 / 𝐾) · 𝐾) = 1)
163162oveq2d 6706 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = (-((𝐹‘0) / (𝐴𝐾))↑𝑐1))
16425simprd 478 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴𝐾) ≠ 0)
16523, 154, 164divcld 10839 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
166165negcld 10417 . . . . . . . . . . . . . . . . . 18 (𝜑 → -((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
16726nnrecred 11104 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 / 𝐾) ∈ ℝ)
168167recnd 10106 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 / 𝐾) ∈ ℂ)
169166, 168, 27cxpmul2d 24500 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾))
170166cxp1d 24497 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐1) = -((𝐹‘0) / (𝐴𝐾)))
171163, 169, 1703eqtr3d 2693 . . . . . . . . . . . . . . . 16 (𝜑 → ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾) = -((𝐹‘0) / (𝐴𝐾)))
172159, 171syl5eq 2697 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝐾) = -((𝐹‘0) / (𝐴𝐾)))
173172oveq2d 6706 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))))
174154, 165mulneg2d 10522 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))) = -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))))
17523, 154, 164divcan2d 10841 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = (𝐹‘0))
176175negeqd 10313 . . . . . . . . . . . . . 14 (𝜑 → -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = -(𝐹‘0))
177173, 174, 1763eqtrd 2689 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = -(𝐹‘0))
178177oveq1d 6705 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = (-(𝐹‘0) · (𝑋𝐾)))
17923, 156mulneg1d 10521 . . . . . . . . . . . 12 (𝜑 → (-(𝐹‘0) · (𝑋𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
180158, 178, 1793eqtrd 2689 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
181151, 180oveq12d 6708 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))) = (0 + -((𝐹‘0) · (𝑋𝐾))))
18223, 156mulcld 10098 . . . . . . . . . . . 12 (𝜑 → ((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
183182negcld 10417 . . . . . . . . . . 11 (𝜑 → -((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
184183addid2d 10275 . . . . . . . . . 10 (𝜑 → (0 + -((𝐹‘0) · (𝑋𝐾))) = -((𝐹‘0) · (𝑋𝐾)))
185118, 181, 1843eqtrd 2689 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = -((𝐹‘0) · (𝑋𝐾)))
186104, 185oveq12d 6708 . . . . . . . 8 (𝜑 → (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
187 fveq2 6229 . . . . . . . . . 10 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
188 oveq2 6698 . . . . . . . . . 10 (𝑘 = 0 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑0))
189187, 188oveq12d 6708 . . . . . . . . 9 (𝑘 = 0 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴‘0) · ((𝑇 · 𝑋)↑0)))
19083, 53, 189fsum1p 14526 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
191103oveq1d 6705 . . . . . . . . 9 (𝜑 → (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
192 1cnd 10094 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
19323, 192, 156subdid 10524 . . . . . . . . 9 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))))
19423, 182negsubd 10436 . . . . . . . . 9 (𝜑 → ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
195191, 193, 1943eqtr4d 2695 . . . . . . . 8 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
196186, 190, 1953eqtr4d 2695 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐹‘0) · (1 − (𝑋𝐾))))
197196fveq2d 6233 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))))
198 1re 10077 . . . . . . . . 9 1 ∈ ℝ
199 resubcl 10383 . . . . . . . . 9 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (1 − (𝑋𝐾)) ∈ ℝ)
200198, 28, 199sylancr 696 . . . . . . . 8 (𝜑 → (1 − (𝑋𝐾)) ∈ ℝ)
201200recnd 10106 . . . . . . 7 (𝜑 → (1 − (𝑋𝐾)) ∈ ℂ)
20223, 201absmuld 14237 . . . . . 6 (𝜑 → (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))))
20313rpge0d 11914 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑋)
20411simp2d 1094 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℝ+)
205204rpred 11910 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
206 min1 12058 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
207198, 205, 206sylancr 696 . . . . . . . . . . . 12 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
2089, 207syl5eqbr 4720 . . . . . . . . . . 11 (𝜑𝑋 ≤ 1)
209 exple1 12960 . . . . . . . . . . 11 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ∧ 𝐾 ∈ ℕ0) → (𝑋𝐾) ≤ 1)
21014, 203, 208, 27, 209syl31anc 1369 . . . . . . . . . 10 (𝜑 → (𝑋𝐾) ≤ 1)
211 subge0 10579 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
212198, 28, 211sylancr 696 . . . . . . . . . 10 (𝜑 → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
213210, 212mpbird 247 . . . . . . . . 9 (𝜑 → 0 ≤ (1 − (𝑋𝐾)))
214200, 213absidd 14205 . . . . . . . 8 (𝜑 → (abs‘(1 − (𝑋𝐾))) = (1 − (𝑋𝐾)))
215214oveq2d 6706 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))))
21624recnd 10106 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘0)) ∈ ℂ)
217216, 192, 156subdid 10524 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))) = (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
218216mulid1d 10095 . . . . . . . 8 (𝜑 → ((abs‘(𝐹‘0)) · 1) = (abs‘(𝐹‘0)))
219218oveq1d 6705 . . . . . . 7 (𝜑 → (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
220215, 217, 2193eqtrd 2689 . . . . . 6 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
221197, 202, 2203eqtrrd 2690 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
222221oveq1d 6705 . . . 4 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) = ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22355, 97, 2223brtr4d 4717 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ≤ (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22444abscld 14219 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22531, 224fsumrecl 14509 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22631, 44fsumabs 14577 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
227 expcl 12918 . . . . . . . . . . . . 13 ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22812, 227sylan 487 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22936, 228syldan 486 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇𝑘) ∈ ℂ)
23041, 229mulcld 10098 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · (𝑇𝑘)) ∈ ℂ)
231230abscld 14219 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23231, 231fsumrecl 14509 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23314, 33reexpcld 13065 . . . . . . . 8 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℝ)
234232, 233remulcld 10108 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
235233adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋↑(𝐾 + 1)) ∈ ℝ)
236231, 235remulcld 10108 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
23712adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑇 ∈ ℂ)
23815adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℂ)
239237, 238, 36mulexpd 13063 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) = ((𝑇𝑘) · (𝑋𝑘)))
240239oveq2d 6706 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
24114adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℝ)
242241, 36reexpcld 13065 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ)
243242recnd 10106 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℂ)
24441, 229, 243mulassd 10101 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
245240, 244eqtr4d 2688 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)))
246245fveq2d 6233 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))))
247230, 243absmuld 14237 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))))
248 elfzelz 12380 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ ℤ)
249 rpexpcl 12919 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ+𝑘 ∈ ℤ) → (𝑋𝑘) ∈ ℝ+)
25013, 248, 249syl2an 493 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ+)
251250rpge0d 11914 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝑋𝑘))
252242, 251absidd 14205 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(𝑋𝑘)) = (𝑋𝑘))
253252oveq2d 6706 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
254246, 247, 2533eqtrd 2689 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
255230absge0d 14227 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴𝑘) · (𝑇𝑘))))
25633adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐾 + 1) ∈ ℕ0)
25734adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
258203adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ 𝑋)
259208adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ≤ 1)
260241, 256, 257, 258, 259leexp2rd 13082 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ≤ (𝑋↑(𝐾 + 1)))
261242, 235, 231, 255, 260lemul2ad 11002 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
262254, 261eqbrtrd 4707 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26331, 224, 236, 262fsumle 14575 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
264233recnd 10106 . . . . . . . . 9 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℂ)
265231recnd 10106 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
26631, 264, 265fsummulc1 14561 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
267263, 266breqtrrd 4713 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26815, 27expp1d 13049 . . . . . . . . . . 11 (𝜑 → (𝑋↑(𝐾 + 1)) = ((𝑋𝐾) · 𝑋))
269156, 15mulcomd 10099 . . . . . . . . . . 11 (𝜑 → ((𝑋𝐾) · 𝑋) = (𝑋 · (𝑋𝐾)))
270268, 269eqtrd 2685 . . . . . . . . . 10 (𝜑 → (𝑋↑(𝐾 + 1)) = (𝑋 · (𝑋𝐾)))
271270oveq2d 6706 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
272232recnd 10106 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
273272, 15, 156mulassd 10101 . . . . . . . . 9 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
274271, 273eqtr4d 2688 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)))
275232, 14remulcld 10108 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) ∈ ℝ)
276 nnssz 11435 . . . . . . . . . . . 12 ℕ ⊆ ℤ
27762, 276sstri 3645 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℤ
278 ne0i 3954 . . . . . . . . . . . . . 14 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
27978, 278syl 17 . . . . . . . . . . . . 13 (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
280 infssuzcl 11810 . . . . . . . . . . . . 13 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
28164, 279, 280sylancr 696 . . . . . . . . . . . 12 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
2826, 281syl5eqel 2734 . . . . . . . . . . 11 (𝜑𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
283277, 282sseldi 3634 . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
28413, 283rpexpcld 13072 . . . . . . . . 9 (𝜑 → (𝑋𝐾) ∈ ℝ+)
285 peano2re 10247 . . . . . . . . . . . 12 𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
286232, 285syl 17 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
287286, 14remulcld 10108 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ∈ ℝ)
288232ltp1d 10992 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
289232, 286, 13, 288ltmul1dd 11965 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋))
290 min2 12059 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
291198, 205, 290sylancr 696 . . . . . . . . . . . . 13 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
2929, 291syl5eqbr 4720 . . . . . . . . . . . 12 (𝜑𝑋𝑈)
293292, 8syl6breq 4726 . . . . . . . . . . 11 (𝜑𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1)))
294 0red 10079 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
29531, 231, 255fsumge0 14571 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))))
296294, 232, 286, 295, 288lelttrd 10233 . . . . . . . . . . . 12 (𝜑 → 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
297 lemuldiv2 10942 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ ∧ 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))) → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
29814, 24, 286, 296, 297syl112anc 1370 . . . . . . . . . . 11 (𝜑 → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
299293, 298mpbird 247 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)))
300275, 287, 24, 289, 299ltletrd 10235 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < (abs‘(𝐹‘0)))
301275, 24, 284, 300ltmul1dd 11965 . . . . . . . 8 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
302274, 301eqbrtrd 4707 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
303225, 234, 29, 267, 302lelttrd 10233 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30446, 225, 29, 226, 303lelttrd 10233 . . . . 5 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30546, 29, 24, 304ltsub2dd 10678 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
30630, 46, 24ltaddsubd 10665 . . . 4 (𝜑 → ((((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)) ↔ ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))))
307305, 306mpbird 247 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)))
30820, 47, 24, 223, 307lelttrd 10233 . 2 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0)))
309 fveq2 6229 . . . . 5 (𝑥 = (𝑇 · 𝑋) → (𝐹𝑥) = (𝐹‘(𝑇 · 𝑋)))
310309fveq2d 6233 . . . 4 (𝑥 = (𝑇 · 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑇 · 𝑋))))
311310breq1d 4695 . . 3 (𝑥 = (𝑇 · 𝑋) → ((abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)) ↔ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))))
312311rspcev 3340 . 2 (((𝑇 · 𝑋) ∈ ℂ ∧ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))) → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
31316, 308, 312syl2anc 694 1 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  {crab 2945  cun 3605  cin 3606  wss 3607  c0 3948  ifcif 4119   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  infcinf 8388  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  cuz 11725  +crp 11870  ...cfz 12364  cexp 12900  abscabs 14018  Σcsu 14460  0𝑝c0p 23481  Polycply 23985  coeffccoe 23987  degcdgr 23988  𝑐ccxp 24347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-0p 23482  df-limc 23675  df-dv 23676  df-ply 23989  df-coe 23991  df-dgr 23992  df-log 24348  df-cxp 24349
This theorem is referenced by:  ftalem6  24849
  Copyright terms: Public domain W3C validator