![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version |
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
3 | 1, 2 | fmptd 6550 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
6 | 3, 4, 5 | fdmfifsupp 8453 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ↦ cmpt 4882 Fincfn 8124 finSupp cfsupp 8443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-supp 7466 df-er 7914 df-en 8125 df-fin 8128 df-fsupp 8444 |
This theorem is referenced by: gsummptfidmadd 18546 gsummptfidmsplit 18551 gsummptfidmsplitres 18552 gsummptshft 18557 gsummptfidminv 18568 gsummptfidmsub 18571 gsumzunsnd 18576 gsummptf1o 18583 srgbinomlem3 18763 srgbinomlem4 18764 psrass1 19628 mamuass 20431 mamuvs1 20434 mamuvs2 20435 dmatmul 20526 mavmulass 20578 mdetrsca 20632 smadiadetlem3 20697 mat2pmatmul 20759 decpmatmul 20800 cpmadugsumlemB 20902 cpmadugsumlemC 20903 tsmsxplem1 22178 tsmsxplem2 22179 plypf1 24188 taylpfval 24339 lgseisenlem3 25323 lgseisenlem4 25324 gsummpt2d 30112 gsumvsca1 30113 gsumvsca2 30114 gsummptres 30115 mdetpmtr1 30220 esumpfinval 30468 aacllem 43079 |
Copyright terms: Public domain | W3C validator |