MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiublem Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiublem 12997
Description: Lemma for fsuppmapnn0fiub 12998 and fsuppmapnn0fiubex 12999. (Contributed by AV, 2-Oct-2019.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
fsuppmapnn0fiub.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
fsuppmapnn0fiublem ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
Distinct variable groups:   𝑓,𝑀   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑍
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsuppmapnn0fiublem
StepHypRef Expression
1 fsuppmapnn0fiub.u . . . 4 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
2 nfv 1995 . . . . . . 7 𝑓(𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
3 nfra1 3090 . . . . . . . 8 𝑓𝑓𝑀 𝑓 finSupp 𝑍
4 nfv 1995 . . . . . . . 8 𝑓 𝑈 ≠ ∅
53, 4nfan 1980 . . . . . . 7 𝑓(∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)
62, 5nfan 1980 . . . . . 6 𝑓((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅))
7 suppssdm 7459 . . . . . . . 8 (𝑓 supp 𝑍) ⊆ dom 𝑓
8 ssel2 3747 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅𝑚0))
9 elmapfn 8032 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅𝑚0) → 𝑓 Fn ℕ0)
10 fndm 6130 . . . . . . . . . . . . . 14 (𝑓 Fn ℕ0 → dom 𝑓 = ℕ0)
11 eqimss 3806 . . . . . . . . . . . . . 14 (dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0)
1210, 11syl 17 . . . . . . . . . . . . 13 (𝑓 Fn ℕ0 → dom 𝑓 ⊆ ℕ0)
138, 9, 123syl 18 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
1413ex 397 . . . . . . . . . . 11 (𝑀 ⊆ (𝑅𝑚0) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
15143ad2ant1 1127 . . . . . . . . . 10 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
1615adantr 466 . . . . . . . . 9 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
1716imp 393 . . . . . . . 8 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
187, 17syl5ss 3763 . . . . . . 7 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℕ0)
1918ex 397 . . . . . 6 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℕ0))
206, 19ralrimi 3106 . . . . 5 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
21 iunss 4695 . . . . 5 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0 ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
2220, 21sylibr 224 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
231, 22syl5eqss 3798 . . 3 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ⊆ ℕ0)
24 ltso 10320 . . . . 5 < Or ℝ
2524a1i 11 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → < Or ℝ)
26 simp2 1131 . . . . . 6 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → 𝑀 ∈ Fin)
27 id 22 . . . . . . . . 9 (𝑓 finSupp 𝑍𝑓 finSupp 𝑍)
2827fsuppimpd 8438 . . . . . . . 8 (𝑓 finSupp 𝑍 → (𝑓 supp 𝑍) ∈ Fin)
2928ralimi 3101 . . . . . . 7 (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
3029adantr 466 . . . . . 6 ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
31 iunfi 8410 . . . . . 6 ((𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
3226, 30, 31syl2an 583 . . . . 5 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
331, 32syl5eqel 2854 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ∈ Fin)
34 simprr 756 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ≠ ∅)
358, 9, 103syl 18 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
3635ex 397 . . . . . . . . . . . 12 (𝑀 ⊆ (𝑅𝑚0) → (𝑓𝑀 → dom 𝑓 = ℕ0))
37363ad2ant1 1127 . . . . . . . . . . 11 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 = ℕ0))
3837adantr 466 . . . . . . . . . 10 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 = ℕ0))
3938imp 393 . . . . . . . . 9 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
40 nn0ssre 11498 . . . . . . . . 9 0 ⊆ ℝ
4139, 40syl6eqss 3804 . . . . . . . 8 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℝ)
427, 41syl5ss 3763 . . . . . . 7 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℝ)
4342ex 397 . . . . . 6 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℝ))
446, 43ralrimi 3106 . . . . 5 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
451sseq1i 3778 . . . . . 6 (𝑈 ⊆ ℝ ↔ 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
46 iunss 4695 . . . . . 6 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
4745, 46bitri 264 . . . . 5 (𝑈 ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
4844, 47sylibr 224 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ⊆ ℝ)
49 fsuppmapnn0fiub.s . . . . 5 𝑆 = sup(𝑈, ℝ, < )
50 fisupcl 8531 . . . . 5 (( < Or ℝ ∧ (𝑈 ∈ Fin ∧ 𝑈 ≠ ∅ ∧ 𝑈 ⊆ ℝ)) → sup(𝑈, ℝ, < ) ∈ 𝑈)
5149, 50syl5eqel 2854 . . . 4 (( < Or ℝ ∧ (𝑈 ∈ Fin ∧ 𝑈 ≠ ∅ ∧ 𝑈 ⊆ ℝ)) → 𝑆𝑈)
5225, 33, 34, 48, 51syl13anc 1478 . . 3 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆𝑈)
5323, 52sseldd 3753 . 2 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆 ∈ ℕ0)
5453ex 397 1 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wss 3723  c0 4063   ciun 4654   class class class wbr 4786   Or wor 5169  dom cdm 5249   Fn wfn 6026  (class class class)co 6793   supp csupp 7446  𝑚 cmap 8009  Fincfn 8109   finSupp cfsupp 8431  supcsup 8502  cr 10137   < clt 10276  0cn0 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-nn 11223  df-n0 11495
This theorem is referenced by:  fsuppmapnn0fiub  12998  fsuppmapnn0fiubex  12999
  Copyright terms: Public domain W3C validator