![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppcor | Structured version Visualization version GIF version |
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppcor.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
fsuppcor.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
fsuppcor.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
fsuppcor.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
fsuppcor.s | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
fsuppcor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
fsuppcor.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fsuppcor.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppcor.i | ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) |
Ref | Expression |
---|---|
fsuppcor | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppcor.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) | |
2 | ffun 6086 | . . . 4 ⊢ (𝐺:𝐵⟶𝐷 → Fun 𝐺) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
4 | fsuppcor.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
5 | ffun 6086 | . . . 4 ⊢ (𝐹:𝐴⟶𝐶 → Fun 𝐹) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
7 | funco 5966 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
8 | 3, 6, 7 | syl2anc 694 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
9 | fsuppcor.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
10 | 9 | fsuppimpd 8323 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
11 | fsuppcor.s | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
12 | 1, 11 | fssresd 6109 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾ 𝐶):𝐶⟶𝐷) |
13 | fco2 6097 | . . . . 5 ⊢ (((𝐺 ↾ 𝐶):𝐶⟶𝐷 ∧ 𝐹:𝐴⟶𝐶) → (𝐺 ∘ 𝐹):𝐴⟶𝐷) | |
14 | 12, 4, 13 | syl2anc 694 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐷) |
15 | eldifi 3765 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
16 | fvco3 6314 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
17 | 4, 15, 16 | syl2an 493 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
18 | ssid 3657 | . . . . . . . 8 ⊢ (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍) | |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
20 | fsuppcor.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
21 | fsuppcor.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
22 | 4, 19, 20, 21 | suppssr 7371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
23 | 22 | fveq2d 6233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
24 | fsuppcor.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) | |
25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 0 ) |
26 | 17, 23, 25 | 3eqtrd 2689 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 0 ) |
27 | 14, 26 | suppss 7370 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍)) |
28 | ssfi 8221 | . . 3 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐺 ∘ 𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍)) → ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin) | |
29 | 10, 27, 28 | syl2anc 694 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin) |
30 | fsuppcor.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
31 | fex 6530 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝐷 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) | |
32 | 1, 30, 31 | syl2anc 694 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
33 | fex 6530 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝐴 ∈ 𝑈) → 𝐹 ∈ V) | |
34 | 4, 20, 33 | syl2anc 694 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
35 | coexg 7159 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
36 | 32, 34, 35 | syl2anc 694 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
37 | fsuppcor.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑊) | |
38 | isfsupp 8320 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 0 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) | |
39 | 36, 37, 38 | syl2anc 694 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) |
40 | 8, 29, 39 | mpbir2and 977 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 class class class wbr 4685 ↾ cres 5145 ∘ ccom 5147 Fun wfun 5920 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 supp csupp 7340 Fincfn 7997 finSupp cfsupp 8316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-supp 7341 df-er 7787 df-en 7998 df-fin 8001 df-fsupp 8317 |
This theorem is referenced by: mapfienlem1 8351 mapfienlem2 8352 cpmadumatpolylem2 20735 |
Copyright terms: Public domain | W3C validator |