Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcolem Structured version   Visualization version   GIF version

Theorem fsuppcolem 8473
 Description: Lemma for fsuppco 8474. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
fsuppcolem.f (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
fsuppcolem.g (𝜑𝐺:𝑋1-1𝑌)
Assertion
Ref Expression
fsuppcolem (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)

Proof of Theorem fsuppcolem
StepHypRef Expression
1 cnvco 5463 . . . 4 (𝐹𝐺) = (𝐺𝐹)
21imaeq1i 5621 . . 3 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
3 imaco 5801 . . 3 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
42, 3eqtri 2782 . 2 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
5 fsuppcolem.g . . . 4 (𝜑𝐺:𝑋1-1𝑌)
6 df-f1 6054 . . . . 5 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
76simprbi 483 . . . 4 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
85, 7syl 17 . . 3 (𝜑 → Fun 𝐺)
9 fsuppcolem.f . . 3 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
10 imafi 8426 . . 3 ((Fun 𝐺 ∧ (𝐹 “ (V ∖ {𝑍})) ∈ Fin) → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
118, 9, 10syl2anc 696 . 2 (𝜑 → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) ∈ Fin)
124, 11syl5eqel 2843 1 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2139  Vcvv 3340   ∖ cdif 3712  {csn 4321  ◡ccnv 5265   “ cima 5269   ∘ ccom 5270  Fun wfun 6043  ⟶wf 6045  –1-1→wf1 6046  Fincfn 8123 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7232  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-fin 8127 This theorem is referenced by:  fsuppco  8474
 Copyright terms: Public domain W3C validator