![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppco2 | Structured version Visualization version GIF version |
Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 8464 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppco2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppco2.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fsuppco2.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) |
fsuppco2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
fsuppco2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fsuppco2.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppco2.i | ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) |
Ref | Expression |
---|---|
fsuppco2 | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppco2.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) | |
2 | ffun 6188 | . . . 4 ⊢ (𝐺:𝐵⟶𝐵 → Fun 𝐺) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
4 | fsuppco2.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
5 | ffun 6188 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
7 | funco 6071 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
8 | 3, 6, 7 | syl2anc 565 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
9 | fsuppco2.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
10 | 9 | fsuppimpd 8437 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
11 | fco 6198 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹):𝐴⟶𝐵) | |
12 | 1, 4, 11 | syl2anc 565 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐵) |
13 | eldifi 3881 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
14 | fvco3 6417 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
15 | 4, 13, 14 | syl2an 575 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
16 | ssid 3771 | . . . . . . . 8 ⊢ (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍) | |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
18 | fsuppco2.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
19 | fsuppco2.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
20 | 4, 17, 18, 19 | suppssr 7477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
21 | 20 | fveq2d 6336 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
22 | fsuppco2.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) | |
23 | 22 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 𝑍) |
24 | 15, 21, 23 | 3eqtrd 2808 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 𝑍) |
25 | 12, 24 | suppss 7476 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍)) |
26 | ssfi 8335 | . . 3 ⊢ (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin) | |
27 | 10, 25, 26 | syl2anc 565 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin) |
28 | fsuppco2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
29 | fex 6632 | . . . . 5 ⊢ ((𝐺:𝐵⟶𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) | |
30 | 1, 28, 29 | syl2anc 565 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
31 | fex 6632 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑈) → 𝐹 ∈ V) | |
32 | 4, 18, 31 | syl2anc 565 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
33 | coexg 7263 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
34 | 30, 32, 33 | syl2anc 565 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
35 | isfsupp 8434 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 𝑍 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin))) | |
36 | 34, 19, 35 | syl2anc 565 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 𝑍 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 𝑍) ∈ Fin))) |
37 | 8, 27, 36 | mpbir2and 684 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∖ cdif 3718 ⊆ wss 3721 class class class wbr 4784 ∘ ccom 5253 Fun wfun 6025 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 supp csupp 7445 Fincfn 8108 finSupp cfsupp 8430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-supp 7446 df-er 7895 df-en 8109 df-fin 8112 df-fsupp 8431 |
This theorem is referenced by: gsumzinv 18551 gsumsub 18554 |
Copyright terms: Public domain | W3C validator |