![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppco | Structured version Visualization version GIF version |
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.) |
Ref | Expression |
---|---|
fsuppco.f | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppco.g | ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) |
fsuppco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fsuppco.v | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
fsuppco | ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppco.v | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | fsuppco.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) | |
3 | df-f1 5931 | . . . . . . 7 ⊢ (𝐺:𝑋–1-1→𝑌 ↔ (𝐺:𝑋⟶𝑌 ∧ Fun ◡𝐺)) | |
4 | 3 | simprbi 479 | . . . . . 6 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun ◡𝐺) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → Fun ◡𝐺) |
6 | cofunex2g 7173 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun ◡𝐺) → (𝐹 ∘ 𝐺) ∈ V) | |
7 | 1, 5, 6 | syl2anc 694 | . . . 4 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ V) |
8 | fsuppco.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
9 | suppimacnv 7351 | . . . 4 ⊢ (((𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) | |
10 | 7, 8, 9 | syl2anc 694 | . . 3 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) = (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍}))) |
11 | suppimacnv 7351 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
12 | 1, 8, 11 | syl2anc 694 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
13 | fsuppco.f | . . . . . 6 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
14 | 13 | fsuppimpd 8323 | . . . . 5 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
15 | 12, 14 | eqeltrrd 2731 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
16 | 15, 2 | fsuppcolem 8347 | . . 3 ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) |
17 | 10, 16 | eqeltrd 2730 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin) |
18 | fsuppimp 8322 | . . . . . 6 ⊢ (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin)) | |
19 | 18 | simpld 474 | . . . . 5 ⊢ (𝐹 finSupp 𝑍 → Fun 𝐹) |
20 | 13, 19 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
21 | f1fun 6141 | . . . . 5 ⊢ (𝐺:𝑋–1-1→𝑌 → Fun 𝐺) | |
22 | 2, 21 | syl 17 | . . . 4 ⊢ (𝜑 → Fun 𝐺) |
23 | funco 5966 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
24 | 20, 22, 23 | syl2anc 694 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘ 𝐺)) |
25 | funisfsupp 8321 | . . 3 ⊢ ((Fun (𝐹 ∘ 𝐺) ∧ (𝐹 ∘ 𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) | |
26 | 24, 7, 8, 25 | syl3anc 1366 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐺) finSupp 𝑍 ↔ ((𝐹 ∘ 𝐺) supp 𝑍) ∈ Fin)) |
27 | 17, 26 | mpbird 247 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 {csn 4210 class class class wbr 4685 ◡ccnv 5142 “ cima 5146 ∘ ccom 5147 Fun wfun 5920 ⟶wf 5922 –1-1→wf1 5923 (class class class)co 6690 supp csupp 7340 Fincfn 7997 finSupp cfsupp 8316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-supp 7341 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-fin 8001 df-fsupp 8317 |
This theorem is referenced by: mapfienlem1 8351 mapfienlem2 8352 coe1sfi 19631 |
Copyright terms: Public domain | W3C validator |