MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppco Structured version   Visualization version   GIF version

Theorem fsuppco 8348
Description: The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
fsuppco.f (𝜑𝐹 finSupp 𝑍)
fsuppco.g (𝜑𝐺:𝑋1-1𝑌)
fsuppco.z (𝜑𝑍𝑊)
fsuppco.v (𝜑𝐹𝑉)
Assertion
Ref Expression
fsuppco (𝜑 → (𝐹𝐺) finSupp 𝑍)

Proof of Theorem fsuppco
StepHypRef Expression
1 fsuppco.v . . . . 5 (𝜑𝐹𝑉)
2 fsuppco.g . . . . . 6 (𝜑𝐺:𝑋1-1𝑌)
3 df-f1 5931 . . . . . . 7 (𝐺:𝑋1-1𝑌 ↔ (𝐺:𝑋𝑌 ∧ Fun 𝐺))
43simprbi 479 . . . . . 6 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
52, 4syl 17 . . . . 5 (𝜑 → Fun 𝐺)
6 cofunex2g 7173 . . . . 5 ((𝐹𝑉 ∧ Fun 𝐺) → (𝐹𝐺) ∈ V)
71, 5, 6syl2anc 694 . . . 4 (𝜑 → (𝐹𝐺) ∈ V)
8 fsuppco.z . . . 4 (𝜑𝑍𝑊)
9 suppimacnv 7351 . . . 4 (((𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
107, 8, 9syl2anc 694 . . 3 (𝜑 → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
11 suppimacnv 7351 . . . . . 6 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
121, 8, 11syl2anc 694 . . . . 5 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
13 fsuppco.f . . . . . 6 (𝜑𝐹 finSupp 𝑍)
1413fsuppimpd 8323 . . . . 5 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
1512, 14eqeltrrd 2731 . . . 4 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
1615, 2fsuppcolem 8347 . . 3 (𝜑 → ((𝐹𝐺) “ (V ∖ {𝑍})) ∈ Fin)
1710, 16eqeltrd 2730 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) ∈ Fin)
18 fsuppimp 8322 . . . . . 6 (𝐹 finSupp 𝑍 → (Fun 𝐹 ∧ (𝐹 supp 𝑍) ∈ Fin))
1918simpld 474 . . . . 5 (𝐹 finSupp 𝑍 → Fun 𝐹)
2013, 19syl 17 . . . 4 (𝜑 → Fun 𝐹)
21 f1fun 6141 . . . . 5 (𝐺:𝑋1-1𝑌 → Fun 𝐺)
222, 21syl 17 . . . 4 (𝜑 → Fun 𝐺)
23 funco 5966 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
2420, 22, 23syl2anc 694 . . 3 (𝜑 → Fun (𝐹𝐺))
25 funisfsupp 8321 . . 3 ((Fun (𝐹𝐺) ∧ (𝐹𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2624, 7, 8, 25syl3anc 1366 . 2 (𝜑 → ((𝐹𝐺) finSupp 𝑍 ↔ ((𝐹𝐺) supp 𝑍) ∈ Fin))
2717, 26mpbird 247 1 (𝜑 → (𝐹𝐺) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  {csn 4210   class class class wbr 4685  ccnv 5142  cima 5146  ccom 5147  Fun wfun 5920  wf 5922  1-1wf1 5923  (class class class)co 6690   supp csupp 7340  Fincfn 7997   finSupp cfsupp 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-supp 7341  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-fin 8001  df-fsupp 8317
This theorem is referenced by:  mapfienlem1  8351  mapfienlem2  8352  coe1sfi  19631
  Copyright terms: Public domain W3C validator