MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit Structured version   Visualization version   GIF version

Theorem fsumsplit 14515
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
StepHypRef Expression
1 ssun1 3809 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2syl5sseqr 3687 . . . 4 (𝜑𝐴𝑈)
43sselda 3636 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
5 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
64, 5syldan 486 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
76ralrimiva 2995 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
8 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
98olcd 407 . . . 4 (𝜑 → (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin))
10 sumss2 14501 . . . 4 (((𝐴𝑈 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
113, 7, 9, 10syl21anc 1365 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
12 ssun2 3810 . . . . 5 𝐵 ⊆ (𝐴𝐵)
1312, 2syl5sseqr 3687 . . . 4 (𝜑𝐵𝑈)
1413sselda 3636 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
1514, 5syldan 486 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
1615ralrimiva 2995 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
17 sumss2 14501 . . . 4 (((𝐵𝑈 ∧ ∀𝑘𝐵 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1813, 16, 9, 17syl21anc 1365 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1911, 18oveq12d 6708 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
20 0cn 10070 . . . 4 0 ∈ ℂ
21 ifcl 4163 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
225, 20, 21sylancl 695 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
23 ifcl 4163 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
245, 20, 23sylancl 695 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
258, 22, 24fsumadd 14514 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
262eleq2d 2716 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
27 elun 3786 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
2826, 27syl6bb 276 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
2928biimpa 500 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
30 iftrue 4125 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3130adantl 481 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
32 noel 3952 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
33 elin 3829 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
34 fsumsplit.1 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3534eleq2d 2716 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
3633, 35syl5rbbr 275 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
3732, 36mtbii 315 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
38 imnan 437 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
3937, 38sylibr 224 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4039imp 444 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4140iffalsed 4130 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
4231, 41oveq12d 6708 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
436addid1d 10274 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
4442, 43eqtrd 2685 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
4539con2d 129 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
4645imp 444 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
4746iffalsed 4130 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
48 iftrue 4125 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
4948adantl 481 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
5047, 49oveq12d 6708 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
5115addid2d 10275 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
5250, 51eqtrd 2685 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5344, 52jaodan 843 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5429, 53syldan 486 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5554sumeq2dv 14477 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
5619, 25, 553eqtr2rd 2692 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  wral 2941  cun 3605  cin 3606  wss 3607  c0 3948  ifcif 4119  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  0cc0 9974   + caddc 9977  cuz 11725  Σcsu 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461
This theorem is referenced by:  fsumsplitf  14516  sumpr  14521  sumtp  14522  fsumm1  14524  fsum1p  14526  fsumsplitsnun  14528  fsumsplitsnunOLD  14530  fsum2dlem  14545  fsumless  14572  fsumabs  14577  fsumrlim  14587  fsumo1  14588  o1fsum  14589  cvgcmpce  14594  fsumiun  14597  incexclem  14612  incexc  14613  isumltss  14624  climcndslem1  14625  climcndslem2  14626  mertenslem1  14660  bitsinv1  15211  bitsinvp1  15218  sylow2a  18080  fsumcn  22720  ovolfiniun  23315  volfiniun  23361  uniioombllem3  23399  itgfsum  23638  dvmptfsum  23783  vieta1lem2  24111  mtest  24203  birthdaylem2  24724  fsumharmonic  24783  ftalem5  24848  chtprm  24924  chtdif  24929  perfectlem2  25000  lgsquadlem2  25151  dchrisumlem1  25223  dchrisumlem2  25224  rpvmasum2  25246  dchrisum0lem1b  25249  dchrisum0lem3  25253  pntrsumbnd2  25301  pntrlog2bndlem6  25317  pntpbnd2  25321  pntlemf  25339  axlowdimlem16  25882  axlowdimlem17  25883  vtxdgoddnumeven  26505  indsumin  30212  signsplypnf  30755  fsum2dsub  30813  hgt750lemd  30854  tgoldbachgtde  30866  jm2.22  37879  jm2.23  37880  sumpair  39508  sumnnodd  40180  stoweidlem11  40546  stoweidlem26  40561  stoweidlem44  40579  sge0resplit  40941  sge0split  40944  fsumsplitsndif  41668  perfectALTVlem2  41956
  Copyright terms: Public domain W3C validator