Step | Hyp | Ref
| Expression |
1 | | 0cn 10238 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
2 | | fsumrelem.3 |
. . . . . . . . 9
⊢ 𝐹:ℂ⟶ℂ |
3 | 2 | ffvelrni 6503 |
. . . . . . . 8
⊢ (0 ∈
ℂ → (𝐹‘0)
∈ ℂ) |
4 | 1, 3 | ax-mp 5 |
. . . . . . 7
⊢ (𝐹‘0) ∈
ℂ |
5 | 4 | addid1i 10429 |
. . . . . 6
⊢ ((𝐹‘0) + 0) = (𝐹‘0) |
6 | | fvoveq1 6819 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦))) |
7 | | fveq2 6333 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) |
8 | 7 | oveq1d 6811 |
. . . . . . . . 9
⊢ (𝑥 = 0 → ((𝐹‘𝑥) + (𝐹‘𝑦)) = ((𝐹‘0) + (𝐹‘𝑦))) |
9 | 6, 8 | eqeq12d 2786 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹‘𝑦)))) |
10 | | oveq2 6804 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → (0 + 𝑦) = (0 + 0)) |
11 | | 00id 10417 |
. . . . . . . . . . 11
⊢ (0 + 0) =
0 |
12 | 10, 11 | syl6eq 2821 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (0 + 𝑦) = 0) |
13 | 12 | fveq2d 6337 |
. . . . . . . . 9
⊢ (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0)) |
14 | | fveq2 6333 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → (𝐹‘𝑦) = (𝐹‘0)) |
15 | 14 | oveq2d 6812 |
. . . . . . . . 9
⊢ (𝑦 = 0 → ((𝐹‘0) + (𝐹‘𝑦)) = ((𝐹‘0) + (𝐹‘0))) |
16 | 13, 15 | eqeq12d 2786 |
. . . . . . . 8
⊢ (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹‘𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))) |
17 | | fsumrelem.4 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
18 | 9, 16, 17 | vtocl2ga 3425 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))) |
19 | 1, 1, 18 | mp2an 672 |
. . . . . 6
⊢ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)) |
20 | 5, 19 | eqtr2i 2794 |
. . . . 5
⊢ ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) |
21 | 4, 4, 1 | addcani 10435 |
. . . . 5
⊢ (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0) |
22 | 20, 21 | mpbi 220 |
. . . 4
⊢ (𝐹‘0) = 0 |
23 | | sumeq1 14627 |
. . . . . 6
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
24 | | sum0 14660 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
25 | 23, 24 | syl6eq 2821 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
26 | 25 | fveq2d 6337 |
. . . 4
⊢ (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = (𝐹‘0)) |
27 | | sumeq1 14627 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) = Σ𝑘 ∈ ∅ (𝐹‘𝐵)) |
28 | | sum0 14660 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (𝐹‘𝐵) = 0 |
29 | 27, 28 | syl6eq 2821 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) = 0) |
30 | 22, 26, 29 | 3eqtr4a 2831 |
. . 3
⊢ (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
31 | 30 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
32 | | addcl 10224 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
33 | 32 | adantl 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
34 | | fsumre.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
35 | 34 | fmpttd 6530 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
36 | 35 | adantr 466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
37 | | simprr 756 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
38 | | f1of 6279 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
39 | 37, 38 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
40 | | fco 6199 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
41 | 36, 39, 40 | syl2anc 573 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ) |
42 | 41 | ffvelrnda 6504 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ) |
43 | | simprl 754 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
44 | | nnuz 11930 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
45 | 43, 44 | syl6eleq 2860 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
46 | 17 | adantl 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) + (𝐹‘𝑦))) |
47 | 39 | ffvelrnda 6504 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝑓‘𝑥) ∈ 𝐴) |
48 | | simpr 471 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
49 | | eqid 2771 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
50 | 49 | fvmpt2 6435 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
51 | 48, 34, 50 | syl2anc 573 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
52 | 51 | fveq2d 6337 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐹‘𝐵)) |
53 | | fvex 6344 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝐵) ∈ V |
54 | | eqid 2771 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) |
55 | 54 | fvmpt2 6435 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ V) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = (𝐹‘𝐵)) |
56 | 48, 53, 55 | sylancl 574 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = (𝐹‘𝐵)) |
57 | 52, 56 | eqtr4d 2808 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
58 | 57 | ralrimiva 3115 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
59 | 58 | ad2antrr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘)) |
60 | | nfcv 2913 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐹 |
61 | | nffvmpt1 6342 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)) |
62 | 60, 61 | nffv 6341 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
63 | | nffvmpt1 6342 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)) |
64 | 62, 63 | nfeq 2925 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)) |
65 | | fveq2 6333 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
66 | 65 | fveq2d 6337 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑥) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)))) |
67 | | fveq2 6333 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
68 | 66, 67 | eqeq12d 2786 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑥) → ((𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) ↔ (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)))) |
69 | 64, 68 | rspc 3454 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘)) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑘) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥)))) |
70 | 47, 59, 69 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
71 | | fvco3 6419 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
72 | 39, 71 | sylan 569 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
73 | 72 | fveq2d 6337 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥)) = (𝐹‘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥)))) |
74 | | fvco3 6419 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
75 | 39, 74 | sylan 569 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
76 | 70, 73, 75 | 3eqtr4d 2815 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑥)) = (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓)‘𝑥)) |
77 | 33, 42, 45, 46, 76 | seqhomo 13055 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐹‘(seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓))‘(♯‘𝐴))) |
78 | | fveq2 6333 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑥))) |
79 | 36 | ffvelrnda 6504 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
80 | 78, 43, 37, 79, 72 | fsum 14659 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴))) |
81 | 80 | fveq2d 6337 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐹‘(seq1( + , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(♯‘𝐴)))) |
82 | | fveq2 6333 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑥) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘(𝑓‘𝑥))) |
83 | 2 | ffvelrni 6503 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℂ → (𝐹‘𝐵) ∈ ℂ) |
84 | 34, 83 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℂ) |
85 | 84 | fmpttd 6530 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℂ) |
86 | 85 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℂ) |
87 | 86 | ffvelrnda 6504 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) ∈ ℂ) |
88 | 82, 43, 37, 87, 75 | fsum 14659 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = (seq1( + , ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∘ 𝑓))‘(♯‘𝐴))) |
89 | 77, 81, 88 | 3eqtr4d 2815 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚)) |
90 | | sumfc 14648 |
. . . . . . 7
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵 |
91 | 90 | fveq2i 6336 |
. . . . . 6
⊢ (𝐹‘Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) |
92 | | sumfc 14648 |
. . . . . 6
⊢
Σ𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵) |
93 | 89, 91, 92 | 3eqtr3g 2828 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |
94 | 93 | expr 444 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
95 | 94 | exlimdv 2013 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
96 | 95 | expimpd 441 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵))) |
97 | | fsumre.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
98 | | fz1f1o 14649 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
99 | 97, 98 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
100 | 31, 96, 99 | mpjaod 849 |
1
⊢ (𝜑 → (𝐹‘Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐹‘𝐵)) |