MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsump1i Structured version   Visualization version   GIF version

Theorem fsump1i 14708
Description: Optimized version of fsump1 14695 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsump1i.1 𝑍 = (ℤ𝑀)
fsump1i.2 𝑁 = (𝐾 + 1)
fsump1i.3 (𝑘 = 𝑁𝐴 = 𝐵)
fsump1i.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fsump1i.5 (𝜑 → (𝐾𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆))
fsump1i.6 (𝜑 → (𝑆 + 𝐵) = 𝑇)
Assertion
Ref Expression
fsump1i (𝜑 → (𝑁𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑘)   𝑇(𝑘)   𝑍(𝑘)

Proof of Theorem fsump1i
StepHypRef Expression
1 fsump1i.2 . . 3 𝑁 = (𝐾 + 1)
2 fsump1i.5 . . . . . 6 (𝜑 → (𝐾𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆))
32simpld 482 . . . . 5 (𝜑𝐾𝑍)
4 fsump1i.1 . . . . 5 𝑍 = (ℤ𝑀)
53, 4syl6eleq 2860 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
6 peano2uz 11948 . . . . 5 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
76, 4syl6eleqr 2861 . . . 4 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ 𝑍)
85, 7syl 17 . . 3 (𝜑 → (𝐾 + 1) ∈ 𝑍)
91, 8syl5eqel 2854 . 2 (𝜑𝑁𝑍)
101oveq2i 6807 . . . . 5 (𝑀...𝑁) = (𝑀...(𝐾 + 1))
1110sumeq1i 14636 . . . 4 Σ𝑘 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴
12 elfzuz 12545 . . . . . . 7 (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ (ℤ𝑀))
1312, 4syl6eleqr 2861 . . . . . 6 (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘𝑍)
14 fsump1i.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
1513, 14sylan2 580 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝐾 + 1))) → 𝐴 ∈ ℂ)
161eqeq2i 2783 . . . . . 6 (𝑘 = 𝑁𝑘 = (𝐾 + 1))
17 fsump1i.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
1816, 17sylbir 225 . . . . 5 (𝑘 = (𝐾 + 1) → 𝐴 = 𝐵)
195, 15, 18fsump1 14695 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵))
2011, 19syl5eq 2817 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵))
212simprd 483 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)
2221oveq1d 6811 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵) = (𝑆 + 𝐵))
23 fsump1i.6 . . 3 (𝜑 → (𝑆 + 𝐵) = 𝑇)
2420, 22, 233eqtrd 2809 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)
259, 24jca 501 1 (𝜑 → (𝑁𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cfv 6030  (class class class)co 6796  cc 10140  1c1 10143   + caddc 10145  cuz 11893  ...cfz 12533  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625
This theorem is referenced by:  cphipval  23261  itgcnlem  23776  vieta1  24287  ipval2  27902  subfacval2  31507
  Copyright terms: Public domain W3C validator