![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsump1i | Structured version Visualization version GIF version |
Description: Optimized version of fsump1 14695 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fsump1i.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
fsump1i.2 | ⊢ 𝑁 = (𝐾 + 1) |
fsump1i.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
fsump1i.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
fsump1i.5 | ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) |
fsump1i.6 | ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) |
Ref | Expression |
---|---|
fsump1i | ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsump1i.2 | . . 3 ⊢ 𝑁 = (𝐾 + 1) | |
2 | fsump1i.5 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) | |
3 | 2 | simpld 482 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑍) |
4 | fsump1i.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 3, 4 | syl6eleq 2860 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
6 | peano2uz 11948 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 + 1) ∈ (ℤ≥‘𝑀)) | |
7 | 6, 4 | syl6eleqr 2861 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 + 1) ∈ 𝑍) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 + 1) ∈ 𝑍) |
9 | 1, 8 | syl5eqel 2854 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
10 | 1 | oveq2i 6807 | . . . . 5 ⊢ (𝑀...𝑁) = (𝑀...(𝐾 + 1)) |
11 | 10 | sumeq1i 14636 | . . . 4 ⊢ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 |
12 | elfzuz 12545 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
13 | 12, 4 | syl6eleqr 2861 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ 𝑍) |
14 | fsump1i.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
15 | 13, 14 | sylan2 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐾 + 1))) → 𝐴 ∈ ℂ) |
16 | 1 | eqeq2i 2783 | . . . . . 6 ⊢ (𝑘 = 𝑁 ↔ 𝑘 = (𝐾 + 1)) |
17 | fsump1i.3 | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
18 | 16, 17 | sylbir 225 | . . . . 5 ⊢ (𝑘 = (𝐾 + 1) → 𝐴 = 𝐵) |
19 | 5, 15, 18 | fsump1 14695 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵)) |
20 | 11, 19 | syl5eq 2817 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵)) |
21 | 2 | simprd 483 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆) |
22 | 21 | oveq1d 6811 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵) = (𝑆 + 𝐵)) |
23 | fsump1i.6 | . . 3 ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) | |
24 | 20, 22, 23 | 3eqtrd 2809 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇) |
25 | 9, 24 | jca 501 | 1 ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 1c1 10143 + caddc 10145 ℤ≥cuz 11893 ...cfz 12533 Σcsu 14624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 |
This theorem is referenced by: cphipval 23261 itgcnlem 23776 vieta1 24287 ipval2 27902 subfacval2 31507 |
Copyright terms: Public domain | W3C validator |