Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsummsndifre Structured version   Visualization version   GIF version

Theorem fsummsndifre 41860
 Description: A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
Assertion
Ref Expression
fsummsndifre ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 ∈ ℝ)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsummsndifre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2912 . . 3 𝑥𝐵
2 nfcsb1v 3696 . . 3 𝑘𝑥 / 𝑘𝐵
3 csbeq1a 3689 . . 3 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
41, 2, 3cbvsumi 14634 . 2 Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 = Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵
5 diffi 8347 . . . 4 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
65adantr 466 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → (𝐴 ∖ {𝑋}) ∈ Fin)
7 eldifi 3881 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ {𝑋}) → 𝑥𝐴)
8 rspcsbela 4148 . . . . . . . 8 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
97, 8sylan 561 . . . . . . 7 ((𝑥 ∈ (𝐴 ∖ {𝑋}) ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
109zred 11683 . . . . . 6 ((𝑥 ∈ (𝐴 ∖ {𝑋}) ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℝ)
1110expcom 398 . . . . 5 (∀𝑘𝐴 𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∖ {𝑋}) → 𝑥 / 𝑘𝐵 ∈ ℝ))
1211adantl 467 . . . 4 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∖ {𝑋}) → 𝑥 / 𝑘𝐵 ∈ ℝ))
1312imp 393 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → 𝑥 / 𝑘𝐵 ∈ ℝ)
146, 13fsumrecl 14672 . 2 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵 ∈ ℝ)
154, 14syl5eqel 2853 1 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∈ wcel 2144  ∀wral 3060  ⦋csb 3680   ∖ cdif 3718  {csn 4314  Fincfn 8108  ℝcr 10136  ℤcz 11578  Σcsu 14623 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator