MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumlt Structured version   Visualization version   GIF version

Theorem fsumlt 14751
Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumlt.1 (𝜑𝐴 ∈ Fin)
fsumlt.2 (𝜑𝐴 ≠ ∅)
fsumlt.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumlt.4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fsumlt.5 ((𝜑𝑘𝐴) → 𝐵 < 𝐶)
Assertion
Ref Expression
fsumlt (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fsumlt
StepHypRef Expression
1 fsumlt.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 fsumlt.2 . . . . 5 (𝜑𝐴 ≠ ∅)
3 fsumlt.5 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 < 𝐶)
4 fsumlt.3 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
5 fsumlt.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
6 difrp 12081 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
74, 5, 6syl2anc 696 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵 < 𝐶 ↔ (𝐶𝐵) ∈ ℝ+))
83, 7mpbid 222 . . . . 5 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ ℝ+)
91, 2, 8fsumrpcl 14687 . . . 4 (𝜑 → Σ𝑘𝐴 (𝐶𝐵) ∈ ℝ+)
109rpgt0d 12088 . . 3 (𝜑 → 0 < Σ𝑘𝐴 (𝐶𝐵))
115recnd 10280 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
124recnd 10280 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
131, 11, 12fsumsub 14739 . . 3 (𝜑 → Σ𝑘𝐴 (𝐶𝐵) = (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
1410, 13breqtrd 4830 . 2 (𝜑 → 0 < (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵))
151, 4fsumrecl 14684 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ)
161, 5fsumrecl 14684 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 ∈ ℝ)
1715, 16posdifd 10826 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶 ↔ 0 < (Σ𝑘𝐴 𝐶 − Σ𝑘𝐴 𝐵)))
1814, 17mpbird 247 1 (𝜑 → Σ𝑘𝐴 𝐵 < Σ𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  wne 2932  c0 4058   class class class wbr 4804  (class class class)co 6814  Fincfn 8123  cr 10147  0cc0 10148   < clt 10286  cmin 10478  +crp 12045  Σcsu 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636
This theorem is referenced by:  lebnumlem3  22983  rrndstprj2  33961  stoweidlem11  40749  stoweidlem26  40764  fourierdlem73  40917  rrndistlt  41031  hoiqssbllem2  41361
  Copyright terms: Public domain W3C validator