MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumkthpow Structured version   Visualization version   GIF version

Theorem fsumkthpow 14907
Description: A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
fsumkthpow ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Distinct variable groups:   𝑛,𝐾   𝑛,𝑀

Proof of Theorem fsumkthpow
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 11445 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
21adantr 472 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℕ)
32nncnd 11149 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℂ)
4 fzfid 12887 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0...𝑀) ∈ Fin)
5 elfzelz 12456 . . . . 5 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℤ)
65zcnd 11596 . . . 4 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℂ)
7 simpl 474 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℕ0)
8 expcl 12993 . . . 4 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝑛𝐾) ∈ ℂ)
96, 7, 8syl2anr 496 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛𝐾) ∈ ℂ)
104, 9fsumcl 14584 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) ∈ ℂ)
112nnne0d 11178 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ≠ 0)
124, 3, 9fsummulc2 14636 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
13 bpolydif 14906 . . . . . 6 (((𝐾 + 1) ∈ ℕ ∧ 𝑛 ∈ ℂ) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
142, 6, 13syl2an 495 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
15 nn0cn 11415 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1615ad2antrr 764 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → 𝐾 ∈ ℂ)
17 ax-1cn 10107 . . . . . . . 8 1 ∈ ℂ
18 pncan 10400 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1916, 17, 18sylancl 697 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) − 1) = 𝐾)
2019oveq2d 6781 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛↑((𝐾 + 1) − 1)) = (𝑛𝐾))
2120oveq2d 6781 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))) = ((𝐾 + 1) · (𝑛𝐾)))
2214, 21eqtrd 2758 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛𝐾)))
2322sumeq2dv 14553 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
24 oveq2 6773 . . . 4 (𝑘 = 𝑛 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 𝑛))
25 oveq2 6773 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑛 + 1)))
26 oveq2 6773 . . . 4 (𝑘 = 0 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 0))
27 oveq2 6773 . . . 4 (𝑘 = (𝑀 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑀 + 1)))
28 nn0z 11513 . . . . 5 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2928adantl 473 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
30 peano2nn0 11446 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
3130adantl 473 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ0)
32 nn0uz 11836 . . . . 5 0 = (ℤ‘0)
3331, 32syl6eleq 2813 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ (ℤ‘0))
34 peano2nn0 11446 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3534ad2antrr 764 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → (𝐾 + 1) ∈ ℕ0)
36 elfznn0 12547 . . . . . . 7 (𝑘 ∈ (0...(𝑀 + 1)) → 𝑘 ∈ ℕ0)
3736adantl 473 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℕ0)
3837nn0cnd 11466 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℂ)
39 bpolycl 14903 . . . . 5 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ ℂ) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4035, 38, 39syl2anc 696 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4124, 25, 26, 27, 29, 33, 40telfsum2 14657 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
4212, 23, 413eqtr2d 2764 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
433, 10, 11, 42mvllmuld 10970 1 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  cfv 6001  (class class class)co 6765  cc 10047  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054  cmin 10379   / cdiv 10797  cn 11133  0cn0 11405  cz 11490  cuz 11800  ...cfz 12440  cexp 12975  Σcsu 14536   BernPoly cbp 14897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-fac 13176  df-bc 13205  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-sum 14537  df-bpoly 14898
This theorem is referenced by:  fsumcube  14911
  Copyright terms: Public domain W3C validator