Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumiunle Structured version   Visualization version   GIF version

Theorem fsumiunle 29703
Description: Upper bound for a sum of nonnegative terms over an indexed union. The inequality may be strict if the indexed union is non-disjoint, since in the right hand side, a summand may be counted several times. (Contributed by Thierry Arnoux, 1-Jan-2021.)
Hypotheses
Ref Expression
fsumiunle.1 (𝜑𝐴 ∈ Fin)
fsumiunle.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiunle.3 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℝ)
fsumiunle.4 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 0 ≤ 𝐶)
Assertion
Ref Expression
fsumiunle (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 ≤ Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)

Proof of Theorem fsumiunle
Dummy variables 𝑓 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumiunle.1 . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumiunle.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
31, 2aciunf1 29591 . . 3 (𝜑 → ∃𝑓(𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4 f1f1orn 6186 . . . . . 6 (𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) → 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓)
54anim1i 591 . . . . 5 ((𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
6 f1f 6139 . . . . . . 7 (𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) → 𝑓: 𝑥𝐴 𝐵 𝑥𝐴 ({𝑥} × 𝐵))
7 frn 6091 . . . . . . 7 (𝑓: 𝑥𝐴 𝐵 𝑥𝐴 ({𝑥} × 𝐵) → ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
86, 7syl 17 . . . . . 6 (𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) → ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
98adantr 480 . . . . 5 ((𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
105, 9jca 553 . . . 4 ((𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
1110eximi 1802 . . 3 (∃𝑓(𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ∃𝑓((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
123, 11syl 17 . 2 (𝜑 → ∃𝑓((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
13 csbeq1a 3575 . . . . . . 7 (𝑘 = 𝑦𝐶 = 𝑦 / 𝑘𝐶)
14 nfcv 2793 . . . . . . 7 𝑦 𝑥𝐴 𝐵
15 nfcv 2793 . . . . . . 7 𝑘 𝑥𝐴 𝐵
16 nfcv 2793 . . . . . . 7 𝑦𝐶
17 nfcsb1v 3582 . . . . . . 7 𝑘𝑦 / 𝑘𝐶
1813, 14, 15, 16, 17cbvsum 14469 . . . . . 6 Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑦 𝑥𝐴 𝐵𝑦 / 𝑘𝐶
19 csbeq1 3569 . . . . . . 7 (𝑦 = (2nd𝑧) → 𝑦 / 𝑘𝐶 = (2nd𝑧) / 𝑘𝐶)
20 snfi 8079 . . . . . . . . . . . 12 {𝑥} ∈ Fin
21 xpfi 8272 . . . . . . . . . . . 12 (({𝑥} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑥} × 𝐵) ∈ Fin)
2220, 2, 21sylancr 696 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ({𝑥} × 𝐵) ∈ Fin)
2322ralrimiva 2995 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin)
24 iunfi 8295 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin)
251, 23, 24syl2anc 694 . . . . . . . . 9 (𝜑 𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin)
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin)
27 simprr 811 . . . . . . . 8 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
2826, 27ssfid 8224 . . . . . . 7 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → ran 𝑓 ∈ Fin)
29 simprl 809 . . . . . . . . 9 ((𝜑 ∧ (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓)
30 f1ocnv 6187 . . . . . . . . 9 (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto 𝑥𝐴 𝐵)
3129, 30syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑥𝐴 𝐵)
3231adantrlr 759 . . . . . . 7 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑥𝐴 𝐵)
33 nfv 1883 . . . . . . . . . 10 𝑥𝜑
34 nfcv 2793 . . . . . . . . . . . . 13 𝑥𝑓
35 nfiu1 4582 . . . . . . . . . . . . 13 𝑥 𝑥𝐴 𝐵
3634nfrn 5400 . . . . . . . . . . . . 13 𝑥ran 𝑓
3734, 35, 36nff1o 6173 . . . . . . . . . . . 12 𝑥 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓
38 nfv 1883 . . . . . . . . . . . . 13 𝑥(2nd ‘(𝑓𝑙)) = 𝑙
3935, 38nfral 2974 . . . . . . . . . . . 12 𝑥𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙
4037, 39nfan 1868 . . . . . . . . . . 11 𝑥(𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
41 nfcv 2793 . . . . . . . . . . . 12 𝑥ran 𝑓
42 nfiu1 4582 . . . . . . . . . . . 12 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
4341, 42nfss 3629 . . . . . . . . . . 11 𝑥ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)
4440, 43nfan 1868 . . . . . . . . . 10 𝑥((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
4533, 44nfan 1868 . . . . . . . . 9 𝑥(𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
46 nfv 1883 . . . . . . . . 9 𝑥 𝑧 ∈ ran 𝑓
4745, 46nfan 1868 . . . . . . . 8 𝑥((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓)
48 simpr 476 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑘) = 𝑧)
4948fveq2d 6233 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = (2nd𝑧))
50 simplr 807 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑘 𝑥𝐴 𝐵)
51 simp-4r 824 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
5251simpld 474 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
5352simprd 478 . . . . . . . . . . . . 13 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
5453ad2antrr 762 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
55 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → (𝑓𝑙) = (𝑓𝑘))
5655fveq2d 6233 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → (2nd ‘(𝑓𝑙)) = (2nd ‘(𝑓𝑘)))
57 id 22 . . . . . . . . . . . . . 14 (𝑙 = 𝑘𝑙 = 𝑘)
5856, 57eqeq12d 2666 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → ((2nd ‘(𝑓𝑙)) = 𝑙 ↔ (2nd ‘(𝑓𝑘)) = 𝑘))
5958rspcva 3338 . . . . . . . . . . . 12 ((𝑘 𝑥𝐴 𝐵 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (2nd ‘(𝑓𝑘)) = 𝑘)
6050, 54, 59syl2anc 694 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = 𝑘)
6149, 60eqtr3d 2687 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd𝑧) = 𝑘)
6252simpld 474 . . . . . . . . . . . 12 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓)
6362ad2antrr 762 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓)
64 f1ocnvfv1 6572 . . . . . . . . . . 11 ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓𝑘 𝑥𝐴 𝐵) → (𝑓‘(𝑓𝑘)) = 𝑘)
6563, 50, 64syl2anc 694 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = 𝑘)
6648fveq2d 6233 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = (𝑓𝑧))
6761, 65, 663eqtr2rd 2692 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑧) = (2nd𝑧))
68 f1ofn 6176 . . . . . . . . . . 11 (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓𝑓 Fn 𝑥𝐴 𝐵)
6962, 68syl 17 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑓 Fn 𝑥𝐴 𝐵)
70 simpllr 815 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑧 ∈ ran 𝑓)
71 fvelrnb 6282 . . . . . . . . . . 11 (𝑓 Fn 𝑥𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 𝑥𝐴 𝐵(𝑓𝑘) = 𝑧))
7271biimpa 500 . . . . . . . . . 10 ((𝑓 Fn 𝑥𝐴 𝐵𝑧 ∈ ran 𝑓) → ∃𝑘 𝑥𝐴 𝐵(𝑓𝑘) = 𝑧)
7369, 70, 72syl2anc 694 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∃𝑘 𝑥𝐴 𝐵(𝑓𝑘) = 𝑧)
7467, 73r19.29a 3107 . . . . . . . 8 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (𝑓𝑧) = (2nd𝑧))
7527sselda 3636 . . . . . . . . 9 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 𝑥𝐴 ({𝑥} × 𝐵))
76 eliun 4556 . . . . . . . . 9 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
7775, 76sylib 208 . . . . . . . 8 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
7847, 74, 77r19.29af 3105 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (𝑓𝑧) = (2nd𝑧))
79 nfv 1883 . . . . . . . . . 10 𝑘(𝜑𝑦 𝑥𝐴 𝐵)
80 nfcv 2793 . . . . . . . . . . 11 𝑘
8117, 80nfel 2806 . . . . . . . . . 10 𝑘𝑦 / 𝑘𝐶 ∈ ℂ
8279, 81nfim 1865 . . . . . . . . 9 𝑘((𝜑𝑦 𝑥𝐴 𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
83 eleq1w 2713 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑘 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵))
8483anbi2d 740 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝜑𝑘 𝑥𝐴 𝐵) ↔ (𝜑𝑦 𝑥𝐴 𝐵)))
8513eleq1d 2715 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝐶 ∈ ℂ ↔ 𝑦 / 𝑘𝐶 ∈ ℂ))
8684, 85imbi12d 333 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦 𝑥𝐴 𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)))
87 nfcv 2793 . . . . . . . . . . . 12 𝑥𝑘
8887, 35nfel 2806 . . . . . . . . . . 11 𝑥 𝑘 𝑥𝐴 𝐵
8933, 88nfan 1868 . . . . . . . . . 10 𝑥(𝜑𝑘 𝑥𝐴 𝐵)
90 fsumiunle.3 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℝ)
9190adantllr 755 . . . . . . . . . . 11 ((((𝜑𝑘 𝑥𝐴 𝐵) ∧ 𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℝ)
9291recnd 10106 . . . . . . . . . 10 ((((𝜑𝑘 𝑥𝐴 𝐵) ∧ 𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
93 eliun 4556 . . . . . . . . . . . 12 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
9493biimpi 206 . . . . . . . . . . 11 (𝑘 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑘𝐵)
9594adantl 481 . . . . . . . . . 10 ((𝜑𝑘 𝑥𝐴 𝐵) → ∃𝑥𝐴 𝑘𝐵)
9689, 92, 95r19.29af 3105 . . . . . . . . 9 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ)
9782, 86, 96chvar 2298 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
9897adantlr 751 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑦 𝑥𝐴 𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
9919, 28, 32, 78, 98fsumf1o 14498 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑦 𝑥𝐴 𝐵𝑦 / 𝑘𝐶 = Σ𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
10018, 99syl5eq 2697 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
101100eqcomd 2657 . . . 4 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 = Σ𝑘 𝑥𝐴 𝐵𝐶)
102 nfcv 2793 . . . . . . . . 9 𝑥𝑧
103102, 42nfel 2806 . . . . . . . 8 𝑥 𝑧 𝑥𝐴 ({𝑥} × 𝐵)
10433, 103nfan 1868 . . . . . . 7 𝑥(𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵))
105 xp2nd 7243 . . . . . . . . 9 (𝑧 ∈ ({𝑥} × 𝐵) → (2nd𝑧) ∈ 𝐵)
106105adantl 481 . . . . . . . 8 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (2nd𝑧) ∈ 𝐵)
10790ralrimiva 2995 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑘𝐵 𝐶 ∈ ℝ)
108107adantlr 751 . . . . . . . . 9 (((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) → ∀𝑘𝐵 𝐶 ∈ ℝ)
109108adantr 480 . . . . . . . 8 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑘𝐵 𝐶 ∈ ℝ)
110 nfcsb1v 3582 . . . . . . . . . . 11 𝑘(2nd𝑧) / 𝑘𝐶
111110nfel1 2808 . . . . . . . . . 10 𝑘(2nd𝑧) / 𝑘𝐶 ∈ ℝ
112 csbeq1a 3575 . . . . . . . . . . 11 (𝑘 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑘𝐶)
113112eleq1d 2715 . . . . . . . . . 10 (𝑘 = (2nd𝑧) → (𝐶 ∈ ℝ ↔ (2nd𝑧) / 𝑘𝐶 ∈ ℝ))
114111, 113rspc 3334 . . . . . . . . 9 ((2nd𝑧) ∈ 𝐵 → (∀𝑘𝐵 𝐶 ∈ ℝ → (2nd𝑧) / 𝑘𝐶 ∈ ℝ))
115114imp 444 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 𝐶 ∈ ℝ) → (2nd𝑧) / 𝑘𝐶 ∈ ℝ)
116106, 109, 115syl2anc 694 . . . . . . 7 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ ℝ)
11776biimpi 206 . . . . . . . 8 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) → ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
118117adantl 481 . . . . . . 7 ((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
119104, 116, 118r19.29af 3105 . . . . . 6 ((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ ℝ)
120119adantlr 751 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ ℝ)
121 xp1st 7242 . . . . . . . . . . 11 (𝑧 ∈ ({𝑥} × 𝐵) → (1st𝑧) ∈ {𝑥})
122 elsni 4227 . . . . . . . . . . 11 ((1st𝑧) ∈ {𝑥} → (1st𝑧) = 𝑥)
123121, 122syl 17 . . . . . . . . . 10 (𝑧 ∈ ({𝑥} × 𝐵) → (1st𝑧) = 𝑥)
124123, 105jca 553 . . . . . . . . 9 (𝑧 ∈ ({𝑥} × 𝐵) → ((1st𝑧) = 𝑥 ∧ (2nd𝑧) ∈ 𝐵))
125 simplll 813 . . . . . . . . . 10 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ ((1st𝑧) = 𝑥 ∧ (2nd𝑧) ∈ 𝐵)) → 𝜑)
126 simplr 807 . . . . . . . . . 10 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ ((1st𝑧) = 𝑥 ∧ (2nd𝑧) ∈ 𝐵)) → 𝑥𝐴)
127 fsumiunle.4 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 0 ≤ 𝐶)
128127ralrimiva 2995 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑘𝐵 0 ≤ 𝐶)
129125, 126, 128syl2anc 694 . . . . . . . . 9 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ ((1st𝑧) = 𝑥 ∧ (2nd𝑧) ∈ 𝐵)) → ∀𝑘𝐵 0 ≤ 𝐶)
130124, 129sylan2 490 . . . . . . . 8 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑘𝐵 0 ≤ 𝐶)
131 nfcv 2793 . . . . . . . . . . 11 𝑘0
132 nfcv 2793 . . . . . . . . . . 11 𝑘
133131, 132, 110nfbr 4732 . . . . . . . . . 10 𝑘0 ≤ (2nd𝑧) / 𝑘𝐶
134112breq2d 4697 . . . . . . . . . 10 (𝑘 = (2nd𝑧) → (0 ≤ 𝐶 ↔ 0 ≤ (2nd𝑧) / 𝑘𝐶))
135133, 134rspc 3334 . . . . . . . . 9 ((2nd𝑧) ∈ 𝐵 → (∀𝑘𝐵 0 ≤ 𝐶 → 0 ≤ (2nd𝑧) / 𝑘𝐶))
136135imp 444 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 0 ≤ 𝐶) → 0 ≤ (2nd𝑧) / 𝑘𝐶)
137106, 130, 136syl2anc 694 . . . . . . 7 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 0 ≤ (2nd𝑧) / 𝑘𝐶)
138104, 137, 118r19.29af 3105 . . . . . 6 ((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → 0 ≤ (2nd𝑧) / 𝑘𝐶)
139138adantlr 751 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → 0 ≤ (2nd𝑧) / 𝑘𝐶)
14026, 120, 139, 27fsumless 14572 . . . 4 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 ≤ Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
141101, 140eqbrtrrd 4709 . . 3 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑘 𝑥𝐴 𝐵𝐶 ≤ Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
142 nfcv 2793 . . . . . . . 8 𝑦𝐵
143 nfcv 2793 . . . . . . . 8 𝑘𝐵
14413, 142, 143, 16, 17cbvsum 14469 . . . . . . 7 Σ𝑘𝐵 𝐶 = Σ𝑦𝐵 𝑦 / 𝑘𝐶
145144a1i 11 . . . . . 6 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑦𝐵 𝑦 / 𝑘𝐶)
146145sumeq2sdv 14479 . . . . 5 (𝜑 → Σ𝑥𝐴 Σ𝑘𝐵 𝐶 = Σ𝑥𝐴 Σ𝑦𝐵 𝑦 / 𝑘𝐶)
147 vex 3234 . . . . . . . . . 10 𝑥 ∈ V
148 vex 3234 . . . . . . . . . 10 𝑦 ∈ V
149147, 148op2ndd 7221 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
150149eqcomd 2657 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝑧))
151150csbeq1d 3573 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑦 / 𝑘𝐶 = (2nd𝑧) / 𝑘𝐶)
152151eqcomd 2657 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) / 𝑘𝐶 = 𝑦 / 𝑘𝐶)
153 nfv 1883 . . . . . . . . 9 𝑘((𝜑𝑥𝐴) ∧ 𝑦𝐵)
15417nfel1 2808 . . . . . . . . 9 𝑘𝑦 / 𝑘𝐶 ∈ ℂ
155153, 154nfim 1865 . . . . . . . 8 𝑘(((𝜑𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
156 eleq1w 2713 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑘𝐵𝑦𝐵))
157156anbi2d 740 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑥𝐴) ∧ 𝑘𝐵) ↔ ((𝜑𝑥𝐴) ∧ 𝑦𝐵)))
158157, 85imbi12d 333 . . . . . . . 8 (𝑘 = 𝑦 → ((((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ) ↔ (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)))
15990recnd 10106 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
160155, 158, 159chvar 2298 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
161160anasss 680 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 / 𝑘𝐶 ∈ ℂ)
162152, 1, 2, 161fsum2d 14546 . . . . 5 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 𝑦 / 𝑘𝐶 = Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
163146, 162eqtrd 2685 . . . 4 (𝜑 → Σ𝑥𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
164163adantr 480 . . 3 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑥𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
165141, 164breqtrrd 4713 . 2 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑘 𝑥𝐴 𝐵𝐶 ≤ Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
16612, 165exlimddv 1903 1 (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 ≤ Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  csb 3566  wss 3607  {csn 4210  cop 4216   ciun 4552   class class class wbr 4685   × cxp 5141  ccnv 5142  ran crn 5144   Fn wfn 5921  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  1st c1st 7208  2nd c2nd 7209  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  cle 10113  Σcsu 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-r1 8665  df-rank 8666  df-card 8803  df-ac 8977  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461
This theorem is referenced by:  hgt750lema  30863
  Copyright terms: Public domain W3C validator