MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumf1o Structured version   Visualization version   GIF version

Theorem fsumf1o 14435
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1o.2 (𝜑𝐶 ∈ Fin)
fsumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1o (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1o
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 14433 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
2 fsumf1o.3 . . . . . . . 8 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1oeq2 6115 . . . . . . . 8 (𝐶 = ∅ → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
42, 3syl5ibcom 235 . . . . . . 7 (𝜑 → (𝐶 = ∅ → 𝐹:∅–1-1-onto𝐴))
54imp 445 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐹:∅–1-1-onto𝐴)
6 f1ofo 6131 . . . . . 6 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
7 fo00 6159 . . . . . . 7 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
87simprbi 480 . . . . . 6 (𝐹:∅–onto𝐴𝐴 = ∅)
95, 6, 83syl 18 . . . . 5 ((𝜑𝐶 = ∅) → 𝐴 = ∅)
109sumeq1d 14412 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
11 simpr 477 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
1211sumeq1d 14412 . . . . 5 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = Σ𝑛 ∈ ∅ 𝐷)
13 sum0 14433 . . . . 5 Σ𝑛 ∈ ∅ 𝐷 = 0
1412, 13syl6eq 2670 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = 0)
151, 10, 143eqtr4a 2680 . . 3 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
1615ex 450 . 2 (𝜑 → (𝐶 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
17 fveq2 6178 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → (𝐹𝑚) = (𝐹‘(𝑓𝑛)))
1817fveq2d 6182 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
19 simprl 793 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (#‘𝐶) ∈ ℕ)
20 simprr 795 . . . . . . . 8 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)
21 f1of 6124 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
222, 21syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐶𝐴)
2322ffvelrnda 6345 . . . . . . . . . 10 ((𝜑𝑚𝐶) → (𝐹𝑚) ∈ 𝐴)
24 fsumf1o.5 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
25 eqid 2620 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
2624, 25fmptd 6371 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2726ffvelrnda 6345 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2823, 27syldan 487 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2928adantlr 750 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
302adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝐹:𝐶1-1-onto𝐴)
31 f1oco 6146 . . . . . . . . . . . 12 ((𝐹:𝐶1-1-onto𝐴𝑓:(1...(#‘𝐶))–1-1-onto𝐶) → (𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴)
3230, 20, 31syl2anc 692 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴)
33 f1of 6124 . . . . . . . . . . 11 ((𝐹𝑓):(1...(#‘𝐶))–1-1-onto𝐴 → (𝐹𝑓):(1...(#‘𝐶))⟶𝐴)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(#‘𝐶))⟶𝐴)
35 fvco3 6262 . . . . . . . . . 10 (((𝐹𝑓):(1...(#‘𝐶))⟶𝐴𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
3634, 35sylan 488 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
37 f1of 6124 . . . . . . . . . . . 12 (𝑓:(1...(#‘𝐶))–1-1-onto𝐶𝑓:(1...(#‘𝐶))⟶𝐶)
3837ad2antll 764 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(#‘𝐶))⟶𝐶)
39 fvco3 6262 . . . . . . . . . . 11 ((𝑓:(1...(#‘𝐶))⟶𝐶𝑛 ∈ (1...(#‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4038, 39sylan 488 . . . . . . . . . 10 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4140fveq2d 6182 . . . . . . . . 9 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4236, 41eqtrd 2654 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(#‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4318, 19, 20, 29, 42fsum 14432 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)) = (seq1( + , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(#‘𝐶)))
44 fsumf1o.4 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4522ffvelrnda 6345 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
4644, 45eqeltrrd 2700 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐺𝐴)
47 fsumf1o.1 . . . . . . . . . . . . . 14 (𝑘 = 𝐺𝐵 = 𝐷)
4847, 25fvmpti 6268 . . . . . . . . . . . . 13 (𝐺𝐴 → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
4946, 48syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
5044fveq2d 6182 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘𝐺))
51 eqid 2620 . . . . . . . . . . . . . 14 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
5251fvmpt2i 6277 . . . . . . . . . . . . 13 (𝑛𝐶 → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5352adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5449, 50, 533eqtr4rd 2665 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
5554ralrimiva 2963 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
56 nffvmpt1 6186 . . . . . . . . . . . 12 𝑛((𝑛𝐶𝐷)‘𝑚)
5756nfeq1 2775 . . . . . . . . . . 11 𝑛((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))
58 fveq2 6178 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑛𝐶𝐷)‘𝑛) = ((𝑛𝐶𝐷)‘𝑚))
59 fveq2 6178 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
6059fveq2d 6182 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6158, 60eqeq12d 2635 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) ↔ ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6257, 61rspc 3298 . . . . . . . . . 10 (𝑚𝐶 → (∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6355, 62mpan9 486 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6463adantlr 750 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6564sumeq2dv 14414 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)))
66 fveq2 6178 . . . . . . . 8 (𝑚 = ((𝐹𝑓)‘𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
6726adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6867ffvelrnda 6345 . . . . . . . 8 (((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
6966, 19, 32, 68, 36fsum 14432 . . . . . . 7 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(#‘𝐶)))
7043, 65, 693eqtr4rd 2665 . . . . . 6 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚))
71 sumfc 14421 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
72 sumfc 14421 . . . . . 6 Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷
7370, 71, 723eqtr3g 2677 . . . . 5 ((𝜑 ∧ ((#‘𝐶) ∈ ℕ ∧ 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
7473expr 642 . . . 4 ((𝜑 ∧ (#‘𝐶) ∈ ℕ) → (𝑓:(1...(#‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
7574exlimdv 1859 . . 3 ((𝜑 ∧ (#‘𝐶) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
7675expimpd 628 . 2 (𝜑 → (((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
77 fsumf1o.2 . . 3 (𝜑𝐶 ∈ Fin)
78 fz1f1o 14422 . . 3 (𝐶 ∈ Fin → (𝐶 = ∅ ∨ ((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)))
7977, 78syl 17 . 2 (𝜑 → (𝐶 = ∅ ∨ ((#‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐶))–1-1-onto𝐶)))
8016, 76, 79mpjaod 396 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1481  wex 1702  wcel 1988  wral 2909  c0 3907  cmpt 4720   I cid 5013  ccom 5108  wf 5872  ontowfo 5874  1-1-ontowf1o 5875  cfv 5876  (class class class)co 6635  Fincfn 7940  cc 9919  0cc0 9921  1c1 9922   + caddc 9924  cn 11005  ...cfz 12311  seqcseq 12784  #chash 13100  Σcsu 14397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398
This theorem is referenced by:  fsumss  14437  fsum2dlem  14482  fsumcnv  14485  fsumrev  14492  fsumshft  14493  ackbijnn  14541  incexclem  14549  phisum  15476  ovoliunlem1  23251  ovolicc2lem4  23269  itg1addlem4  23447  itg1mulc  23452  basellem3  24790  basellem5  24792  fsumdvdscom  24892  dvdsflsumcom  24895  musum  24898  fsumdvdsmul  24902  sgmppw  24903  fsumvma  24919  dchrsum2  24974  sumdchr2  24976  dchrisumlem1  25159  dchrisum0flblem1  25178  dchrisum0fno1  25181  fsumiunle  29549  eulerpartlemgs2  30416  reprpmtf1o  30678  breprexplema  30682  hgt750lemb  30708  hgt750lema  30709  fsumf1of  39606  sumnnodd  39662  dvnprodlem2  39925
  Copyright terms: Public domain W3C validator