MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsdiaglem Structured version   Visualization version   GIF version

Theorem fsumdvdsdiaglem 25108
Description: A "diagonal commutation" of divisor sums analogous to fsum0diag 14708. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
fsumdvdsdiag.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
fsumdvdsdiaglem (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑁   𝜑,𝑗,𝑘
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem fsumdvdsdiaglem
StepHypRef Expression
1 elrabi 3499 . . . . 5 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∈ ℕ)
21ad2antll 767 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℕ)
3 breq1 4807 . . . . . . . 8 (𝑥 = 𝑘 → (𝑥 ∥ (𝑁 / 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
43elrab 3504 . . . . . . 7 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∥ (𝑁 / 𝑗)))
54simprbi 483 . . . . . 6 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)} → 𝑘 ∥ (𝑁 / 𝑗))
65ad2antll 767 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∥ (𝑁 / 𝑗))
7 fsumdvdsdiag.1 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
87adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℕ)
9 simprl 811 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
10 dvdsdivcl 15240 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
118, 9, 10syl2anc 696 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
12 breq1 4807 . . . . . . . 8 (𝑥 = (𝑁 / 𝑗) → (𝑥𝑁 ↔ (𝑁 / 𝑗) ∥ 𝑁))
1312elrab 3504 . . . . . . 7 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ((𝑁 / 𝑗) ∈ ℕ ∧ (𝑁 / 𝑗) ∥ 𝑁))
1413simprbi 483 . . . . . 6 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 / 𝑗) ∥ 𝑁)
1511, 14syl 17 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∥ 𝑁)
162nnzd 11673 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℤ)
17 elrabi 3499 . . . . . . . 8 ((𝑁 / 𝑗) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (𝑁 / 𝑗) ∈ ℕ)
1811, 17syl 17 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℕ)
1918nnzd 11673 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑗) ∈ ℤ)
208nnzd 11673 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℤ)
21 dvdstr 15220 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝑁 / 𝑗) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑘 ∥ (𝑁 / 𝑗) ∧ (𝑁 / 𝑗) ∥ 𝑁) → 𝑘𝑁))
2216, 19, 20, 21syl3anc 1477 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 ∥ (𝑁 / 𝑗) ∧ (𝑁 / 𝑗) ∥ 𝑁) → 𝑘𝑁))
236, 15, 22mp2and 717 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘𝑁)
24 breq1 4807 . . . . 5 (𝑥 = 𝑘 → (𝑥𝑁𝑘𝑁))
2524elrab 3504 . . . 4 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑁))
262, 23, 25sylanbrc 701 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
27 elrabi 3499 . . . . 5 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑗 ∈ ℕ)
2827ad2antrl 766 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℕ)
2928nnzd 11673 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℤ)
3028nnne0d 11257 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ≠ 0)
31 dvdsmulcr 15213 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ (𝑁 / 𝑗) ∈ ℤ ∧ (𝑗 ∈ ℤ ∧ 𝑗 ≠ 0)) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
3216, 19, 29, 30, 31syl112anc 1481 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗) ↔ 𝑘 ∥ (𝑁 / 𝑗)))
336, 32mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ ((𝑁 / 𝑗) · 𝑗))
348nncnd 11228 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑁 ∈ ℂ)
3528nncnd 11228 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ ℂ)
3634, 35, 30divcan1d 10994 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = 𝑁)
372nncnd 11228 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ∈ ℂ)
382nnne0d 11257 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑘 ≠ 0)
3934, 37, 38divcan2d 10995 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · (𝑁 / 𝑘)) = 𝑁)
4036, 39eqtr4d 2797 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑁 / 𝑗) · 𝑗) = (𝑘 · (𝑁 / 𝑘)))
4133, 40breqtrd 4830 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)))
42 ssrab2 3828 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
43 dvdsdivcl 15240 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
448, 26, 43syl2anc 696 . . . . . . . 8 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4542, 44sseldi 3742 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℕ)
4645nnzd 11673 . . . . . 6 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑁 / 𝑘) ∈ ℤ)
47 dvdscmulr 15212 . . . . . 6 ((𝑗 ∈ ℤ ∧ (𝑁 / 𝑘) ∈ ℤ ∧ (𝑘 ∈ ℤ ∧ 𝑘 ≠ 0)) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
4829, 46, 16, 38, 47syl112anc 1481 . . . . 5 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → ((𝑘 · 𝑗) ∥ (𝑘 · (𝑁 / 𝑘)) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
4941, 48mpbid 222 . . . 4 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∥ (𝑁 / 𝑘))
50 breq1 4807 . . . . 5 (𝑥 = 𝑗 → (𝑥 ∥ (𝑁 / 𝑘) ↔ 𝑗 ∥ (𝑁 / 𝑘)))
5150elrab 3504 . . . 4 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ (𝑁 / 𝑘)))
5228, 49, 51sylanbrc 701 . . 3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
5326, 52jca 555 . 2 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)})) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}))
5453ex 449 1 (𝜑 → ((𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑗)}) → (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  wne 2932  {crab 3054   class class class wbr 4804  (class class class)co 6813  0cc0 10128   · cmul 10133   / cdiv 10876  cn 11212  cz 11569  cdvds 15182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-dvds 15183
This theorem is referenced by:  fsumdvdsdiag  25109  fsumdvdscom  25110
  Copyright terms: Public domain W3C validator