MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg3 Structured version   Visualization version   GIF version

Theorem fsumcvg3 14504
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumcvg3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fsumcvg3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3659 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑛)))
21rexbidv 3081 . . 3 (𝐴 = ∅ → (∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛) ↔ ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛)))
3 fsumcvg3.4 . . . . . . 7 (𝜑𝐴𝑍)
43adantr 480 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑍)
5 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
64, 5syl6sseq 3684 . . . . 5 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (ℤ𝑀))
7 ltso 10156 . . . . . 6 < Or ℝ
8 fsumcvg3.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
98adantr 480 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
10 simpr 476 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
11 uzssz 11745 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
12 zssre 11422 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3645 . . . . . . . . 9 (ℤ𝑀) ⊆ ℝ
145, 13eqsstri 3668 . . . . . . . 8 𝑍 ⊆ ℝ
154, 14syl6ss 3648 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ ℝ)
169, 10, 153jca 1261 . . . . . 6 ((𝜑𝐴 ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ))
17 fisupcl 8416 . . . . . 6 (( < Or ℝ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
187, 16, 17sylancr 696 . . . . 5 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
196, 18sseldd 3637 . . . 4 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ (ℤ𝑀))
20 fimaxre2 11007 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2115, 9, 20syl2anc 694 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2215, 10, 213jca 1261 . . . . . . . 8 ((𝜑𝐴 ≠ ∅) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘))
23 suprub 11022 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
2422, 23sylan 487 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
256sselda 3636 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (ℤ𝑀))
2611, 19sseldi 3634 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
2726adantr 480 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
28 elfz5 12372 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ sup(𝐴, ℝ, < ) ∈ ℤ) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
2925, 27, 28syl2anc 694 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
3024, 29mpbird 247 . . . . . 6 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3130ex 449 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝑘𝐴𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))))
3231ssrdv 3642 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
33 oveq2 6698 . . . . . 6 (𝑛 = sup(𝐴, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup(𝐴, ℝ, < )))
3433sseq2d 3666 . . . . 5 (𝑛 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
3534rspcev 3340 . . . 4 ((sup(𝐴, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
3619, 32, 35syl2anc 694 . . 3 ((𝜑𝐴 ≠ ∅) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
37 fsumcvg3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
38 uzid 11740 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3937, 38syl 17 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
40 0ss 4005 . . . 4 ∅ ⊆ (𝑀...𝑀)
41 oveq2 6698 . . . . . 6 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
4241sseq2d 3666 . . . . 5 (𝑛 = 𝑀 → (∅ ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑀)))
4342rspcev 3340 . . . 4 ((𝑀 ∈ (ℤ𝑀) ∧ ∅ ⊆ (𝑀...𝑀)) → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
4439, 40, 43sylancl 695 . . 3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
452, 36, 44pm2.61ne 2908 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
465eleq2i 2722 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
47 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4846, 47sylan2br 492 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4948adantlr 751 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
50 simprl 809 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
51 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5251adantlr 751 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
53 simprr 811 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
5449, 50, 52, 53fsumcvg2 14502 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛))
55 climrel 14267 . . . 4 Rel ⇝
5655releldmi 5394 . . 3 (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5754, 56syl 17 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5845, 57rexlimddv 3064 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948  ifcif 4119   class class class wbr 4685   Or wor 5063  dom cdm 5143  cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  cc 9972  cr 9973  0cc0 9974   + caddc 9977   < clt 10112  cle 10113  cz 11415  cuz 11725  ...cfz 12364  seqcseq 12841  cli 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263
This theorem is referenced by:  isumless  14621  radcnv0  24215  fsumcvg4  30124
  Copyright terms: Public domain W3C validator