Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcnv Structured version   Visualization version   GIF version

Theorem fsumcnv 14548
 Description: Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumcnv.1 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
fsumcnv.2 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
fsumcnv.3 (𝜑𝐴 ∈ Fin)
fsumcnv.4 (𝜑 → Rel 𝐴)
fsumcnv.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumcnv (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑗,𝑘,𝑦,𝐵   𝑥,𝑗,𝐶,𝑘   𝜑,𝑥,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑗,𝑘)

Proof of Theorem fsumcnv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3575 . . . 4 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
2 fvex 6239 . . . . 5 (2nd𝑦) ∈ V
3 fvex 6239 . . . . 5 (1st𝑦) ∈ V
4 opex 4962 . . . . . . 7 𝑗, 𝑘⟩ ∈ V
5 fsumcnv.1 . . . . . . 7 (𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)
64, 5csbie 3592 . . . . . 6 𝑗, 𝑘⟩ / 𝑥𝐵 = 𝐷
7 opeq12 4435 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑗, 𝑘⟩ = ⟨(2nd𝑦), (1st𝑦)⟩)
87csbeq1d 3573 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑗, 𝑘⟩ / 𝑥𝐵 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
96, 8syl5eqr 2699 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵)
102, 3, 9csbie2 3596 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(2nd𝑦), (1st𝑦)⟩ / 𝑥𝐵
111, 10syl6eqr 2703 . . 3 (𝑥 = ⟨(2nd𝑦), (1st𝑦)⟩ → 𝐵 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
12 fsumcnv.3 . . . 4 (𝜑𝐴 ∈ Fin)
13 cnvfi 8289 . . . 4 (𝐴 ∈ Fin → 𝐴 ∈ Fin)
1412, 13syl 17 . . 3 (𝜑𝐴 ∈ Fin)
15 relcnv 5538 . . . . 5 Rel 𝐴
16 cnvf1o 7321 . . . . 5 (Rel 𝐴 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
1715, 16ax-mp 5 . . . 4 (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴
18 fsumcnv.4 . . . . . 6 (𝜑 → Rel 𝐴)
19 dfrel2 5618 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
2018, 19sylib 208 . . . . 5 (𝜑𝐴 = 𝐴)
21 f1oeq3 6167 . . . . 5 (𝐴 = 𝐴 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2220, 21syl 17 . . . 4 (𝜑 → ((𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴 ↔ (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴))
2317, 22mpbii 223 . . 3 (𝜑 → (𝑧𝐴 {𝑧}):𝐴1-1-onto𝐴)
24 1st2nd 7258 . . . . . . 7 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2515, 24mpan 706 . . . . . 6 (𝑦𝐴𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2625fveq2d 6233 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩))
27 id 22 . . . . . . 7 (𝑦𝐴𝑦𝐴)
2825, 27eqeltrrd 2731 . . . . . 6 (𝑦𝐴 → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
29 sneq 4220 . . . . . . . . . 10 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3029cnveqd 5330 . . . . . . . . 9 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
3130unieqd 4478 . . . . . . . 8 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = {⟨(1st𝑦), (2nd𝑦)⟩})
32 opswap 5660 . . . . . . . 8 {⟨(1st𝑦), (2nd𝑦)⟩} = ⟨(2nd𝑦), (1st𝑦)⟩
3331, 32syl6eq 2701 . . . . . . 7 (𝑧 = ⟨(1st𝑦), (2nd𝑦)⟩ → {𝑧} = ⟨(2nd𝑦), (1st𝑦)⟩)
34 eqid 2651 . . . . . . 7 (𝑧𝐴 {𝑧}) = (𝑧𝐴 {𝑧})
35 opex 4962 . . . . . . 7 ⟨(2nd𝑦), (1st𝑦)⟩ ∈ V
3633, 34, 35fvmpt 6321 . . . . . 6 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3728, 36syl 17 . . . . 5 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘⟨(1st𝑦), (2nd𝑦)⟩) = ⟨(2nd𝑦), (1st𝑦)⟩)
3826, 37eqtrd 2685 . . . 4 (𝑦𝐴 → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
3938adantl 481 . . 3 ((𝜑𝑦𝐴) → ((𝑧𝐴 {𝑧})‘𝑦) = ⟨(2nd𝑦), (1st𝑦)⟩)
40 fsumcnv.5 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4111, 14, 23, 39, 40fsumf1o 14498 . 2 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
42 csbeq1a 3575 . . . . 5 (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ → 𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
4325, 42syl 17 . . . 4 (𝑦𝐴𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
44 opex 4962 . . . . . . 7 𝑘, 𝑗⟩ ∈ V
45 fsumcnv.2 . . . . . . 7 (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)
4644, 45csbie 3592 . . . . . 6 𝑘, 𝑗⟩ / 𝑦𝐶 = 𝐷
47 opeq12 4435 . . . . . . . 8 ((𝑘 = (1st𝑦) ∧ 𝑗 = (2nd𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
4847ancoms 468 . . . . . . 7 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → ⟨𝑘, 𝑗⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
4948csbeq1d 3573 . . . . . 6 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝑘, 𝑗⟩ / 𝑦𝐶 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
5046, 49syl5eqr 2699 . . . . 5 ((𝑗 = (2nd𝑦) ∧ 𝑘 = (1st𝑦)) → 𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶)
512, 3, 50csbie2 3596 . . . 4 (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷 = ⟨(1st𝑦), (2nd𝑦)⟩ / 𝑦𝐶
5243, 51syl6eqr 2703 . . 3 (𝑦𝐴𝐶 = (2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷)
5352sumeq2i 14473 . 2 Σ𝑦 𝐴𝐶 = Σ𝑦 𝐴(2nd𝑦) / 𝑗(1st𝑦) / 𝑘𝐷
5441, 53syl6eqr 2703 1 (𝜑 → Σ𝑥𝐴 𝐵 = Σ𝑦 𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ⦋csb 3566  {csn 4210  ⟨cop 4216  ∪ cuni 4468   ↦ cmpt 4762  ◡ccnv 5142  Rel wrel 5148  –1-1-onto→wf1o 5925  ‘cfv 5926  1st c1st 7208  2nd c2nd 7209  Fincfn 7997  ℂcc 9972  Σcsu 14460 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461 This theorem is referenced by:  fsumcom2  14549  fsumcom2OLD  14550
 Copyright terms: Public domain W3C validator