![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumcllem | Structured version Visualization version GIF version |
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.) |
Ref | Expression |
---|---|
fsumcllem.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
fsumcllem.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
fsumcllem.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumcllem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
fsumcllem.5 | ⊢ (𝜑 → 0 ∈ 𝑆) |
Ref | Expression |
---|---|
fsumcllem | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐴 = ∅) | |
2 | 1 | sumeq1d 14639 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
3 | sum0 14660 | . . . 4 ⊢ Σ𝑘 ∈ ∅ 𝐵 = 0 | |
4 | 2, 3 | syl6eq 2821 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
5 | fsumcllem.5 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑆) | |
6 | 5 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 0 ∈ 𝑆) |
7 | 4, 6 | eqeltrd 2850 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
8 | fsumcllem.1 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
9 | 8 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝑆 ⊆ ℂ) |
10 | fsumcllem.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
11 | 10 | adantlr 694 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
12 | fsumcllem.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
13 | 12 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin) |
14 | fsumcllem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
15 | 14 | adantlr 694 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ ∅) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
16 | simpr 471 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
17 | 9, 11, 13, 15, 16 | fsumcl2lem 14670 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
18 | 7, 17 | pm2.61dane 3030 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ⊆ wss 3723 ∅c0 4063 (class class class)co 6796 Fincfn 8113 ℂcc 10140 0cc0 10142 + caddc 10145 Σcsu 14624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 |
This theorem is referenced by: fsumcl 14672 fsumrecl 14673 fsumzcl 14674 fsumnn0cl 14675 fsumge0 14734 plymullem 24192 efnnfsumcl 25050 efchtdvds 25106 fsumrp0cl 30035 fsumcnsrcl 38262 aacllem 43075 |
Copyright terms: Public domain | W3C validator |