![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsum2cn | Structured version Visualization version GIF version |
Description: Version of fsumcn 22874 for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014.) |
Ref | Expression |
---|---|
fsumcn.3 | ⊢ 𝐾 = (TopOpen‘ℂfld) |
fsumcn.4 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
fsumcn.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsum2cn.7 | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
fsum2cn.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
Ref | Expression |
---|---|
fsum2cn | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑢Σ𝑘 ∈ 𝐴 𝐵 | |
2 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑣Σ𝑘 ∈ 𝐴 𝐵 | |
3 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑥𝑣 | |
5 | nfcsb1v 3690 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐵 | |
6 | 4, 5 | nfcsb 3692 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
7 | 3, 6 | nfsum 14620 | . . . 4 ⊢ Ⅎ𝑥Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
8 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
9 | nfcsb1v 3690 | . . . . 5 ⊢ Ⅎ𝑦⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 | |
10 | 8, 9 | nfsum 14620 | . . . 4 ⊢ Ⅎ𝑦Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵 |
11 | csbeq1a 3683 | . . . . . 6 ⊢ (𝑥 = 𝑢 → 𝐵 = ⦋𝑢 / 𝑥⦌𝐵) | |
12 | csbeq1a 3683 | . . . . . 6 ⊢ (𝑦 = 𝑣 → ⦋𝑢 / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) | |
13 | 11, 12 | sylan9eq 2814 | . . . . 5 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
14 | 13 | sumeq2sdv 14634 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
15 | 1, 2, 7, 10, 14 | cbvmpt2 6899 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
16 | vex 3343 | . . . . . . . 8 ⊢ 𝑢 ∈ V | |
17 | vex 3343 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
18 | 16, 17 | op2ndd 7344 | . . . . . . 7 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → (2nd ‘𝑧) = 𝑣) |
19 | 18 | csbeq1d 3681 | . . . . . 6 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
20 | 16, 17 | op1std 7343 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → (1st ‘𝑧) = 𝑢) |
21 | 20 | csbeq1d 3681 | . . . . . . 7 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑢 / 𝑥⦌𝐵) |
22 | 21 | csbeq2dv 4135 | . . . . . 6 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋𝑣 / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
23 | 19, 22 | eqtrd 2794 | . . . . 5 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
24 | 23 | sumeq2sdv 14634 | . . . 4 ⊢ (𝑧 = 〈𝑢, 𝑣〉 → Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵 = Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
25 | 24 | mpt2mpt 6917 | . . 3 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
26 | 15, 25 | eqtr4i 2785 | . 2 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
27 | fsumcn.3 | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
28 | fsumcn.4 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
29 | fsum2cn.7 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
30 | txtopon 21596 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
31 | 28, 29, 30 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝐽 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
32 | fsumcn.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
33 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑢𝐵 | |
34 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑣𝐵 | |
35 | 33, 34, 6, 9, 13 | cbvmpt2 6899 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
36 | 23 | mpt2mpt 6917 | . . . . 5 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) = (𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 ↦ ⦋𝑣 / 𝑦⦌⦋𝑢 / 𝑥⦌𝐵) |
37 | 35, 36 | eqtr4i 2785 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
38 | fsum2cn.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) | |
39 | 37, 38 | syl5eqelr 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑧 ∈ (𝑋 × 𝑌) ↦ ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
40 | 27, 31, 32, 39 | fsumcn 22874 | . 2 ⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ Σ𝑘 ∈ 𝐴 ⦋(2nd ‘𝑧) / 𝑦⦌⦋(1st ‘𝑧) / 𝑥⦌𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
41 | 26, 40 | syl5eqel 2843 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⦋csb 3674 〈cop 4327 ↦ cmpt 4881 × cxp 5264 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 1st c1st 7331 2nd c2nd 7332 Fincfn 8121 Σcsu 14615 TopOpenctopn 16284 ℂfldccnfld 19948 TopOnctopon 20917 Cn ccn 21230 ×t ctx 21565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-icc 12375 df-fz 12520 df-fzo 12660 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-sum 14616 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-xrs 16364 df-qtop 16369 df-imas 16370 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-cnfld 19949 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cn 21233 df-cnp 21234 df-tx 21567 df-hmeo 21760 df-xms 22326 df-ms 22327 df-tms 22328 |
This theorem is referenced by: dipcn 27884 |
Copyright terms: Public domain | W3C validator |