![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssres | Structured version Visualization version GIF version |
Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
fssres | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5930 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | fnssres 6042 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶) Fn 𝐶) | |
3 | resss 5457 | . . . . . . 7 ⊢ (𝐹 ↾ 𝐶) ⊆ 𝐹 | |
4 | rnss 5386 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝐶) ⊆ 𝐹 → ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 |
6 | sstr 3644 | . . . . . 6 ⊢ ((ran (𝐹 ↾ 𝐶) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐵) → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) | |
7 | 5, 6 | mpan 706 | . . . . 5 ⊢ (ran 𝐹 ⊆ 𝐵 → ran (𝐹 ↾ 𝐶) ⊆ 𝐵) |
8 | 2, 7 | anim12i 589 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) ∧ ran 𝐹 ⊆ 𝐵) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
9 | 8 | an32s 863 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
10 | 1, 9 | sylanb 488 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) |
11 | df-f 5930 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ran (𝐹 ↾ 𝐶) ⊆ 𝐵)) | |
12 | 10, 11 | sylibr 224 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ⊆ wss 3607 ran crn 5144 ↾ cres 5145 Fn wfn 5921 ⟶wf 5922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-fun 5928 df-fn 5929 df-f 5930 |
This theorem is referenced by: fssresd 6109 fssres2 6110 fresin 6111 fresaun 6113 f1ssres 6146 f2ndf 7328 elmapssres 7924 pmresg 7927 ralxpmap 7949 mapunen 8170 fofinf1o 8282 fseqenlem1 8885 inar1 9635 gruima 9662 addnqf 9808 mulnqf 9809 fseq1p1m1 12452 injresinj 12629 seqf1olem2 12881 wrdred1 13382 rlimres 14333 lo1res 14334 vdwnnlem1 15746 fsets 15938 resmhm 17406 resghm 17723 gsumzres 18356 gsumzadd 18368 gsum2dlem2 18416 dpjidcl 18503 ablfac1eu 18518 abvres 18887 znf1o 19948 islindf4 20225 kgencn 21407 ptrescn 21490 hmeores 21622 tsmsres 21994 tsmsmhm 21996 tsmsadd 21997 xrge0gsumle 22683 xrge0tsms 22684 ovolicc2lem4 23334 limcdif 23685 limcflf 23690 limcmo 23691 dvres 23720 dvres3a 23723 aannenlem1 24128 logcn 24438 dvlog 24442 dvlog2 24444 logtayl 24451 dvatan 24707 atancn 24708 efrlim 24741 amgm 24762 dchrelbas2 25007 redwlklem 26624 pthdivtx 26681 hhssabloilem 28246 hhssnv 28249 xrge0tsmsd 29913 cntmeas 30417 eulerpartlemt 30561 eulerpartlemmf 30565 eulerpartlemgvv 30566 subiwrd 30575 sseqp1 30585 wrdres 30745 poimirlem4 33543 mbfresfi 33586 mbfposadd 33587 itg2gt0cn 33595 sdclem2 33668 mzpcompact2lem 37631 eldiophb 37637 eldioph2 37642 cncfiooicclem1 40424 fouriersw 40766 sge0tsms 40915 psmeasure 41006 sssmf 41268 resmgmhm 42123 lindslinindimp2lem2 42573 |
Copyright terms: Public domain | W3C validator |