![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovf1od | Structured version Visualization version GIF version |
Description: The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
Ref | Expression |
---|---|
fsovf1od | ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑𝑚 𝐴)–1-1-onto→(𝒫 𝐴 ↑𝑚 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
2 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | fsovfvd.g | . . . 4 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
5 | 1, 2, 3, 4 | fsovfd 38825 | . . 3 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑𝑚 𝐴)⟶(𝒫 𝐴 ↑𝑚 𝐵)) |
6 | 5 | ffnd 6186 | . 2 ⊢ (𝜑 → 𝐺 Fn (𝒫 𝐵 ↑𝑚 𝐴)) |
7 | eqid 2770 | . . . . 5 ⊢ (𝐵𝑂𝐴) = (𝐵𝑂𝐴) | |
8 | 1, 3, 2, 7 | fsovfd 38825 | . . . 4 ⊢ (𝜑 → (𝐵𝑂𝐴):(𝒫 𝐴 ↑𝑚 𝐵)⟶(𝒫 𝐵 ↑𝑚 𝐴)) |
9 | 8 | ffnd 6186 | . . 3 ⊢ (𝜑 → (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑𝑚 𝐵)) |
10 | 1, 2, 3, 4, 7 | fsovcnvd 38827 | . . . 4 ⊢ (𝜑 → ◡𝐺 = (𝐵𝑂𝐴)) |
11 | 10 | fneq1d 6121 | . . 3 ⊢ (𝜑 → (◡𝐺 Fn (𝒫 𝐴 ↑𝑚 𝐵) ↔ (𝐵𝑂𝐴) Fn (𝒫 𝐴 ↑𝑚 𝐵))) |
12 | 9, 11 | mpbird 247 | . 2 ⊢ (𝜑 → ◡𝐺 Fn (𝒫 𝐴 ↑𝑚 𝐵)) |
13 | dff1o4 6286 | . 2 ⊢ (𝐺:(𝒫 𝐵 ↑𝑚 𝐴)–1-1-onto→(𝒫 𝐴 ↑𝑚 𝐵) ↔ (𝐺 Fn (𝒫 𝐵 ↑𝑚 𝐴) ∧ ◡𝐺 Fn (𝒫 𝐴 ↑𝑚 𝐵))) | |
14 | 6, 12, 13 | sylanbrc 564 | 1 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑𝑚 𝐴)–1-1-onto→(𝒫 𝐴 ↑𝑚 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 {crab 3064 Vcvv 3349 𝒫 cpw 4295 ↦ cmpt 4861 ◡ccnv 5248 Fn wfn 6026 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 ↑𝑚 cmap 8008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-map 8010 |
This theorem is referenced by: ntrneif1o 38892 clsneif1o 38921 clsneikex 38923 clsneinex 38924 neicvgf1o 38931 neicvgmex 38934 neicvgel1 38936 |
Copyright terms: Public domain | W3C validator |