![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsnunf | Structured version Visualization version GIF version |
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunf | ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . . 3 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝐹:𝑆⟶𝑇) | |
2 | simp2l 1242 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝑋 ∈ 𝑉) | |
3 | simp3 1133 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → 𝑌 ∈ 𝑇) | |
4 | f1osng 6338 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) | |
5 | 2, 3, 4 | syl2anc 696 | . . . 4 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌}) |
6 | f1of 6298 | . . . 4 ⊢ ({〈𝑋, 𝑌〉}:{𝑋}–1-1-onto→{𝑌} → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) |
8 | simp2r 1243 | . . . 4 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → ¬ 𝑋 ∈ 𝑆) | |
9 | disjsn 4390 | . . . 4 ⊢ ((𝑆 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝑆) | |
10 | 8, 9 | sylibr 224 | . . 3 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝑆 ∩ {𝑋}) = ∅) |
11 | fun 6227 | . . 3 ⊢ (((𝐹:𝑆⟶𝑇 ∧ {〈𝑋, 𝑌〉}:{𝑋}⟶{𝑌}) ∧ (𝑆 ∩ {𝑋}) = ∅) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌})) | |
12 | 1, 7, 10, 11 | syl21anc 1476 | . 2 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌})) |
13 | snssi 4484 | . . . . 5 ⊢ (𝑌 ∈ 𝑇 → {𝑌} ⊆ 𝑇) | |
14 | 13 | 3ad2ant3 1130 | . . . 4 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → {𝑌} ⊆ 𝑇) |
15 | ssequn2 3929 | . . . 4 ⊢ ({𝑌} ⊆ 𝑇 ↔ (𝑇 ∪ {𝑌}) = 𝑇) | |
16 | 14, 15 | sylib 208 | . . 3 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝑇 ∪ {𝑌}) = 𝑇) |
17 | 16 | feq3d 6193 | . 2 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → ((𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶(𝑇 ∪ {𝑌}) ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇)) |
18 | 12, 17 | mpbid 222 | 1 ⊢ ((𝐹:𝑆⟶𝑇 ∧ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ 𝑆) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):(𝑆 ∪ {𝑋})⟶𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∪ cun 3713 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 {csn 4321 〈cop 4327 ⟶wf 6045 –1-1-onto→wf1o 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 |
This theorem is referenced by: fsnunf2 6616 fnchoice 39687 nnsum4primeseven 42198 nnsum4primesevenALTV 42199 |
Copyright terms: Public domain | W3C validator |