![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fseq1m1p1 | Structured version Visualization version GIF version |
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
fseq1m1p1.1 | ⊢ 𝐻 = {〈𝑁, 𝐵〉} |
Ref | Expression |
---|---|
fseq1m1p1 | ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnm1nn0 11536 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
2 | eqid 2771 | . . . 4 ⊢ {〈((𝑁 − 1) + 1), 𝐵〉} = {〈((𝑁 − 1) + 1), 𝐵〉} | |
3 | 2 | fseq1p1m1 12621 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
5 | nncn 11230 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
6 | ax-1cn 10196 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
7 | npcan 10492 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
8 | 5, 6, 7 | sylancl 574 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
9 | 8 | opeq1d 4545 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 〈((𝑁 − 1) + 1), 𝐵〉 = 〈𝑁, 𝐵〉) |
10 | 9 | sneqd 4328 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → {〈((𝑁 − 1) + 1), 𝐵〉} = {〈𝑁, 𝐵〉}) |
11 | fseq1m1p1.1 | . . . . . 6 ⊢ 𝐻 = {〈𝑁, 𝐵〉} | |
12 | 10, 11 | syl6eqr 2823 | . . . . 5 ⊢ (𝑁 ∈ ℕ → {〈((𝑁 − 1) + 1), 𝐵〉} = 𝐻) |
13 | 12 | uneq2d 3918 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉}) = (𝐹 ∪ 𝐻)) |
14 | 13 | eqeq2d 2781 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉}) ↔ 𝐺 = (𝐹 ∪ 𝐻))) |
15 | 14 | 3anbi3d 1553 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ {〈((𝑁 − 1) + 1), 𝐵〉})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)))) |
16 | 8 | oveq2d 6809 | . . . 4 ⊢ (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
17 | 16 | feq2d 6171 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ↔ 𝐺:(1...𝑁)⟶𝐴)) |
18 | 8 | fveq2d 6336 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝐺‘((𝑁 − 1) + 1)) = (𝐺‘𝑁)) |
19 | 18 | eqeq1d 2773 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺‘𝑁) = 𝐵)) |
20 | 17, 19 | 3anbi12d 1548 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
21 | 4, 15, 20 | 3bitr3d 298 | 1 ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∪ cun 3721 {csn 4316 〈cop 4322 ↾ cres 5251 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 1c1 10139 + caddc 10141 − cmin 10468 ℕcn 11222 ℕ0cn0 11494 ...cfz 12533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |