MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsuc Structured version   Visualization version   GIF version

Theorem frsuc 7577
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
frsuc (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)))

Proof of Theorem frsuc
StepHypRef Expression
1 rdgdmlim 7558 . . . . 5 Lim dom rec(𝐹, 𝐴)
2 limomss 7112 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
31, 2ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
43sseli 3632 . . 3 (𝐵 ∈ ω → 𝐵 ∈ dom rec(𝐹, 𝐴))
5 rdgsucg 7564 . . 3 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
64, 5syl 17 . 2 (𝐵 ∈ ω → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
7 peano2b 7123 . . 3 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 fvres 6245 . . 3 (suc 𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵))
97, 8sylbi 207 . 2 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (rec(𝐹, 𝐴)‘suc 𝐵))
10 fvres 6245 . . 3 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘𝐵) = (rec(𝐹, 𝐴)‘𝐵))
1110fveq2d 6233 . 2 (𝐵 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
126, 9, 113eqtr4d 2695 1 (𝐵 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝐵) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  wss 3607  dom cdm 5143  cres 5145  Lim wlim 5762  suc csuc 5763  cfv 5926  ωcom 7107  reccrdg 7550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551
This theorem is referenced by:  frsucmpt  7578  frsucmptn  7579  seqomlem1  7590  seqomlem4  7593  onasuc  7653  onmsuc  7654  onesuc  7655  inf3lemc  8561  alephfplem2  8966  ackbij2lem2  9100  infpssrlem2  9164  fin23lem34  9206  fin23lem35  9207  itunisuc  9279  om2uzrdg  12795  uzrdgsuci  12799
  Copyright terms: Public domain W3C validator