MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frss Structured version   Visualization version   GIF version

Theorem frss 5233
Description: Subset theorem for the well-founded predicate. Exercise 1 of [TakeutiZaring] p. 31. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
frss (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem frss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3751 . . . . . 6 (𝑥𝐴 → (𝐴𝐵𝑥𝐵))
21com12 32 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
32anim1d 589 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑥𝐵𝑥 ≠ ∅)))
43imim1d 82 . . 3 (𝐴𝐵 → (((𝑥𝐵𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) → ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
54alimdv 1994 . 2 (𝐴𝐵 → (∀𝑥((𝑥𝐵𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) → ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)))
6 df-fr 5225 . 2 (𝑅 Fr 𝐵 ↔ ∀𝑥((𝑥𝐵𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
7 df-fr 5225 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
85, 6, 73imtr4g 285 1 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1630  wne 2932  wral 3050  wrex 3051  wss 3715  c0 4058   class class class wbr 4804   Fr wfr 5222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-in 3722  df-ss 3729  df-fr 5225
This theorem is referenced by:  freq2  5237  wess  5253  frmin  32048  frrlem5  32090
  Copyright terms: Public domain W3C validator