![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrusgrord0 | Structured version Visualization version GIF version |
Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
Ref | Expression |
---|---|
frrusgrord0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
frrusgrord0 | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrusgr 27240 | . . . . . . 7 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
2 | 1 | anim1i 591 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
3 | frrusgrord0.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | isfusgr 26255 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
5 | 2, 4 | sylibr 224 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
6 | 3 | fusgreghash2wsp 27318 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))) |
7 | 5, 6 | stoic3 1741 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))) |
8 | 7 | imp 444 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1)))) |
9 | 3 | frgrhash2wsp 27312 | . . . . . . . 8 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · ((#‘𝑉) − 1))) |
10 | 9 | eqcomd 2657 | . . . . . . 7 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → ((#‘𝑉) · ((#‘𝑉) − 1)) = (#‘(2 WSPathsN 𝐺))) |
11 | 10 | eqeq1d 2653 | . . . . . 6 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (((#‘𝑉) · ((#‘𝑉) − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))) |
12 | 11 | 3adant3 1101 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((#‘𝑉) · ((#‘𝑉) − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))) |
13 | 12 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((#‘𝑉) · ((#‘𝑉) − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))) |
14 | 3 | frrusgrord0lem 27319 | . . . . 5 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 ∈ ℂ ∧ (#‘𝑉) ∈ ℂ ∧ (#‘𝑉) ≠ 0)) |
15 | peano2cnm 10385 | . . . . . . . 8 ⊢ ((#‘𝑉) ∈ ℂ → ((#‘𝑉) − 1) ∈ ℂ) | |
16 | 15 | 3ad2ant2 1103 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (#‘𝑉) ∈ ℂ ∧ (#‘𝑉) ≠ 0) → ((#‘𝑉) − 1) ∈ ℂ) |
17 | kcnktkm1cn 10499 | . . . . . . . 8 ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) | |
18 | 17 | 3ad2ant1 1102 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (#‘𝑉) ∈ ℂ ∧ (#‘𝑉) ≠ 0) → (𝐾 · (𝐾 − 1)) ∈ ℂ) |
19 | simp2 1082 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (#‘𝑉) ∈ ℂ ∧ (#‘𝑉) ≠ 0) → (#‘𝑉) ∈ ℂ) | |
20 | simp3 1083 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ (#‘𝑉) ∈ ℂ ∧ (#‘𝑉) ≠ 0) → (#‘𝑉) ≠ 0) | |
21 | 16, 18, 19, 20 | mulcand 10698 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ (#‘𝑉) ∈ ℂ ∧ (#‘𝑉) ≠ 0) → (((#‘𝑉) · ((#‘𝑉) − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))) ↔ ((#‘𝑉) − 1) = (𝐾 · (𝐾 − 1)))) |
22 | npcan1 10493 | . . . . . . . . 9 ⊢ ((#‘𝑉) ∈ ℂ → (((#‘𝑉) − 1) + 1) = (#‘𝑉)) | |
23 | oveq1 6697 | . . . . . . . . 9 ⊢ (((#‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (((#‘𝑉) − 1) + 1) = ((𝐾 · (𝐾 − 1)) + 1)) | |
24 | 22, 23 | sylan9req 2706 | . . . . . . . 8 ⊢ (((#‘𝑉) ∈ ℂ ∧ ((#‘𝑉) − 1) = (𝐾 · (𝐾 − 1))) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)) |
25 | 24 | ex 449 | . . . . . . 7 ⊢ ((#‘𝑉) ∈ ℂ → (((#‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
26 | 25 | 3ad2ant2 1103 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ (#‘𝑉) ∈ ℂ ∧ (#‘𝑉) ≠ 0) → (((#‘𝑉) − 1) = (𝐾 · (𝐾 − 1)) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
27 | 21, 26 | sylbid 230 | . . . . 5 ⊢ ((𝐾 ∈ ℂ ∧ (#‘𝑉) ∈ ℂ ∧ (#‘𝑉) ≠ 0) → (((#‘𝑉) · ((#‘𝑉) − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
28 | 14, 27 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (((#‘𝑉) · ((#‘𝑉) − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
29 | 13, 28 | sylbird 250 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ((#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
30 | 8, 29 | mpd 15 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)) |
31 | 30 | ex 449 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∅c0 3948 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 ℂcc 9972 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 − cmin 10304 2c2 11108 #chash 13157 Vtxcvtx 25919 USGraphcusgr 26089 FinUSGraphcfusgr 26253 VtxDegcvtxdg 26417 WSPathsN cwwspthsn 26776 FriendGraph cfrgr 27236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-ac2 9323 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-ac 8977 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-rp 11871 df-xadd 11985 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-s2 13639 df-s3 13640 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 df-vtx 25921 df-iedg 25922 df-edg 25985 df-uhgr 25998 df-ushgr 25999 df-upgr 26022 df-umgr 26023 df-uspgr 26090 df-usgr 26091 df-fusgr 26254 df-nbgr 26270 df-vtxdg 26418 df-wlks 26551 df-wlkson 26552 df-trls 26645 df-trlson 26646 df-pths 26668 df-spths 26669 df-pthson 26670 df-spthson 26671 df-wwlks 26778 df-wwlksn 26779 df-wwlksnon 26780 df-wspthsn 26781 df-wspthsnon 26782 df-frgr 27237 |
This theorem is referenced by: frrusgrord 27321 |
Copyright terms: Public domain | W3C validator |