Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem4 Structured version   Visualization version   GIF version

Theorem frrlem4 31908
 Description: Lemma for founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypothesis
Ref Expression
frrlem4.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
frrlem4 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑓,𝑔   𝐴,,𝑥,𝑦,𝑎   𝐵,𝑎   𝑓,,𝑥,𝑦   𝐺,𝑎,𝑓,𝑔   ,𝐺,𝑥,𝑦   𝑥,𝑔,𝑦   𝑅,𝑎,𝑓,𝑔   𝑅,,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem frrlem4
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frrlem4.1 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
21frrlem2 31906 . . . . 5 (𝑔𝐵 → Fun 𝑔)
3 funfn 5956 . . . . 5 (Fun 𝑔𝑔 Fn dom 𝑔)
42, 3sylib 208 . . . 4 (𝑔𝐵𝑔 Fn dom 𝑔)
5 fnresin1 6043 . . . 4 (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
64, 5syl 17 . . 3 (𝑔𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
76adantr 480 . 2 ((𝑔𝐵𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
81frrlem1 31905 . . . . . . . 8 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))}
98abeq2i 2764 . . . . . . 7 (𝑔𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
10 fndm 6028 . . . . . . . . . . . 12 (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏)
1110adantr 480 . . . . . . . . . . 11 ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) → dom 𝑔 = 𝑏)
1211raleqdv 3174 . . . . . . . . . 10 ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) → (∀𝑎 ∈ dom 𝑔(𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ↔ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1312biimp3ar 1473 . . . . . . . . 9 ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎 ∈ dom 𝑔(𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
14 rsp 2958 . . . . . . . . 9 (∀𝑎 ∈ dom 𝑔(𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1513, 14syl 17 . . . . . . . 8 ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1615exlimiv 1898 . . . . . . 7 (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
179, 16sylbi 207 . . . . . 6 (𝑔𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
18 elinel1 3832 . . . . . 6 (𝑎 ∈ (dom 𝑔 ∩ dom ) → 𝑎 ∈ dom 𝑔)
1917, 18impel 484 . . . . 5 ((𝑔𝐵𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
2019adantlr 751 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
21 simpr 476 . . . . 5 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → 𝑎 ∈ (dom 𝑔 ∩ dom ))
2221fvresd 6246 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑔𝑎))
23 resres 5444 . . . . . 6 ((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))
24 predss 5725 . . . . . . . . 9 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) ⊆ (dom 𝑔 ∩ dom )
25 sseqin2 3850 . . . . . . . . 9 (Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))
2624, 25mpbi 220 . . . . . . . 8 ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)
271frrlem1 31905 . . . . . . . . . . . 12 𝐵 = { ∣ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))}
2827abeq2i 2764 . . . . . . . . . . 11 (𝐵 ↔ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))
29 eeanv 2218 . . . . . . . . . . . 12 (∃𝑏𝑐((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))))
30 inss1 3866 . . . . . . . . . . . . . . 15 (𝑏𝑐) ⊆ 𝑏
31 simpl2l 1134 . . . . . . . . . . . . . . 15 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → 𝑏𝐴)
3230, 31syl5ss 3647 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑏𝑐) ⊆ 𝐴)
33 simp2r 1108 . . . . . . . . . . . . . . 15 ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)
34 simp2r 1108 . . . . . . . . . . . . . . 15 (( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)
35 nfra1 2970 . . . . . . . . . . . . . . . . 17 𝑎𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏
36 nfra1 2970 . . . . . . . . . . . . . . . . 17 𝑎𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐
3735, 36nfan 1868 . . . . . . . . . . . . . . . 16 𝑎(∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)
38 elinel1 3832 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (𝑏𝑐) → 𝑎𝑏)
39 rsp 2958 . . . . . . . . . . . . . . . . . . 19 (∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏))
4038, 39syl5com 31 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑏𝑐) → (∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏))
41 elinel2 3833 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (𝑏𝑐) → 𝑎𝑐)
42 rsp 2958 . . . . . . . . . . . . . . . . . . 19 (∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))
4341, 42syl5com 31 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (𝑏𝑐) → (∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))
4440, 43anim12d 585 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝑏𝑐) → ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)))
45 ssin 3868 . . . . . . . . . . . . . . . . . 18 ((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
4645biimpi 206 . . . . . . . . . . . . . . . . 17 ((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
4744, 46syl6com 37 . . . . . . . . . . . . . . . 16 ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
4837, 47ralrimi 2986 . . . . . . . . . . . . . . 15 ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
4933, 34, 48syl2an 493 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
50 simpl1 1084 . . . . . . . . . . . . . . . 16 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → 𝑔 Fn 𝑏)
5150, 10syl 17 . . . . . . . . . . . . . . 15 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → dom 𝑔 = 𝑏)
52 simpr1 1087 . . . . . . . . . . . . . . . 16 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → Fn 𝑐)
53 fndm 6028 . . . . . . . . . . . . . . . 16 ( Fn 𝑐 → dom = 𝑐)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → dom = 𝑐)
55 ineq12 3842 . . . . . . . . . . . . . . . . 17 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (dom 𝑔 ∩ dom ) = (𝑏𝑐))
5655sseq1d 3665 . . . . . . . . . . . . . . . 16 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ↔ (𝑏𝑐) ⊆ 𝐴))
5755sseq2d 3666 . . . . . . . . . . . . . . . . 17 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
5855, 57raleqbidv 3182 . . . . . . . . . . . . . . . 16 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
5956, 58anbi12d 747 . . . . . . . . . . . . . . 15 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) ↔ ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))))
6051, 54, 59syl2anc 694 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) ↔ ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))))
6132, 49, 60mpbir2and 977 . . . . . . . . . . . . 13 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6261exlimivv 1900 . . . . . . . . . . . 12 (∃𝑏𝑐((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6329, 62sylbir 225 . . . . . . . . . . 11 ((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
649, 28, 63syl2anb 495 . . . . . . . . . 10 ((𝑔𝐵𝐵) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6564adantr 480 . . . . . . . . 9 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
66 preddowncl 5745 . . . . . . . . 9 (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) → (𝑎 ∈ (dom 𝑔 ∩ dom ) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)))
6765, 21, 66sylc 65 . . . . . . . 8 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))
6826, 67syl5eq 2697 . . . . . . 7 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎))
6968reseq2d 5428 . . . . . 6 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔 ↾ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))
7023, 69syl5eq 2697 . . . . 5 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))
7170oveq2d 6706 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
7220, 22, 713eqtr4d 2695 . . 3 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))
7372ralrimiva 2995 . 2 ((𝑔𝐵𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))
747, 73jca 553 1 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030  {cab 2637  ∀wral 2941   ∩ cin 3606   ⊆ wss 3607  dom cdm 5143   ↾ cres 5145  Predcpred 5717  Fun wfun 5920   Fn wfn 5921  ‘cfv 5926  (class class class)co 6690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-ov 6693 This theorem is referenced by:  frrlem5  31909
 Copyright terms: Public domain W3C validator