Step | Hyp | Ref
| Expression |
1 | | frrlem4.1 |
. . . . . 6
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
2 | 1 | frrlem2 31906 |
. . . . 5
⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) |
3 | | funfn 5956 |
. . . . 5
⊢ (Fun
𝑔 ↔ 𝑔 Fn dom 𝑔) |
4 | 2, 3 | sylib 208 |
. . . 4
⊢ (𝑔 ∈ 𝐵 → 𝑔 Fn dom 𝑔) |
5 | | fnresin1 6043 |
. . . 4
⊢ (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝑔 ∈ 𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
7 | 6 | adantr 480 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
8 | 1 | frrlem1 31905 |
. . . . . . . 8
⊢ 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))} |
9 | 8 | abeq2i 2764 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
10 | | fndm 6028 |
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏) |
11 | 10 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) → dom 𝑔 = 𝑏) |
12 | 11 | raleqdv 3174 |
. . . . . . . . . 10
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) → (∀𝑎 ∈ dom 𝑔(𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ↔ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
13 | 12 | biimp3ar 1473 |
. . . . . . . . 9
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎 ∈ dom 𝑔(𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
14 | | rsp 2958 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
dom 𝑔(𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
16 | 15 | exlimiv 1898 |
. . . . . . 7
⊢
(∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
17 | 9, 16 | sylbi 207 |
. . . . . 6
⊢ (𝑔 ∈ 𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
18 | | elinel1 3832 |
. . . . . 6
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → 𝑎 ∈ dom 𝑔) |
19 | 17, 18 | impel 484 |
. . . . 5
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
20 | 19 | adantlr 751 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
21 | | simpr 476 |
. . . . 5
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) |
22 | 21 | fvresd 6246 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) |
23 | | resres 5444 |
. . . . . 6
⊢ ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) |
24 | | predss 5725 |
. . . . . . . . 9
⊢
Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) |
25 | | sseqin2 3850 |
. . . . . . . . 9
⊢
(Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) |
26 | 24, 25 | mpbi 220 |
. . . . . . . 8
⊢ ((dom
𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) |
27 | 1 | frrlem1 31905 |
. . . . . . . . . . . 12
⊢ 𝐵 = {ℎ ∣ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))} |
28 | 27 | abeq2i 2764 |
. . . . . . . . . . 11
⊢ (ℎ ∈ 𝐵 ↔ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) |
29 | | eeanv 2218 |
. . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
30 | | inss1 3866 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∩ 𝑐) ⊆ 𝑏 |
31 | | simpl2l 1134 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → 𝑏 ⊆ 𝐴) |
32 | 30, 31 | syl5ss 3647 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑏 ∩ 𝑐) ⊆ 𝐴) |
33 | | simp2r 1108 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) |
34 | | simp2r 1108 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) |
35 | | nfra1 2970 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 |
36 | | nfra1 2970 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 |
37 | 35, 36 | nfan 1868 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎(∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) |
38 | | elinel1 3832 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑏) |
39 | | rsp 2958 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎 ∈ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) |
40 | 38, 39 | syl5com 31 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) |
41 | | elinel2 3833 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑐) |
42 | | rsp 2958 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑎 ∈
𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎 ∈ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) |
43 | 41, 42 | syl5com 31 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) |
44 | 40, 43 | anim12d 585 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → ((∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) |
45 | | ssin 3868 |
. . . . . . . . . . . . . . . . . 18
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
46 | 45 | biimpi 206 |
. . . . . . . . . . . . . . . . 17
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
47 | 44, 46 | syl6com 37 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏 ∩ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
48 | 37, 47 | ralrimi 2986 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
49 | 33, 34, 48 | syl2an 493 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
50 | | simpl1 1084 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → 𝑔 Fn 𝑏) |
51 | 50, 10 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → dom 𝑔 = 𝑏) |
52 | | simpr1 1087 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ℎ Fn 𝑐) |
53 | | fndm 6028 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ Fn 𝑐 → dom ℎ = 𝑐) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → dom ℎ = 𝑐) |
55 | | ineq12 3842 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → (dom 𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐)) |
56 | 55 | sseq1d 3665 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ↔ (𝑏 ∩ 𝑐) ⊆ 𝐴)) |
57 | 55 | sseq2d 3666 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
58 | 55, 57 | raleqbidv 3182 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
59 | 56, 58 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → (((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) ↔ ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)))) |
60 | 51, 54, 59 | syl2anc 694 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → (((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) ↔ ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)))) |
61 | 32, 49, 60 | mpbir2and 977 |
. . . . . . . . . . . . 13
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
62 | 61 | exlimivv 1900 |
. . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
63 | 29, 62 | sylbir 225 |
. . . . . . . . . . 11
⊢
((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
64 | 9, 28, 63 | syl2anb 495 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
65 | 64 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
66 | | preddowncl 5745 |
. . . . . . . . 9
⊢ (((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) → (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))) |
67 | 65, 21, 66 | sylc 65 |
. . . . . . . 8
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)) |
68 | 26, 67 | syl5eq 2697 |
. . . . . . 7
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎)) |
69 | 68 | reseq2d 5428 |
. . . . . 6
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) |
70 | 23, 69 | syl5eq 2697 |
. . . . 5
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) |
71 | 70 | oveq2d 6706 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
72 | 20, 22, 71 | 3eqtr4d 2695 |
. . 3
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) |
73 | 72 | ralrimiva 2995 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) |
74 | 7, 73 | jca 553 |
1
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |