![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frrlem3 | Structured version Visualization version GIF version |
Description: Lemma for founded recursion. An acceptable function's domain is a subset of 𝐴. (Contributed by Paul Chapman, 21-Apr-2012.) |
Ref | Expression |
---|---|
frrlem1.1 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
Ref | Expression |
---|---|
frrlem3 | ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frrlem1.1 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
2 | 1 | frrlem1 32108 | . . 3 ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} |
3 | 2 | abeq2i 2874 | . 2 ⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))) |
4 | fndm 6152 | . . . . . . 7 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
5 | 4 | sseq1d 3774 | . . . . . 6 ⊢ (𝑔 Fn 𝑧 → (dom 𝑔 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
6 | 5 | biimpar 503 | . . . . 5 ⊢ ((𝑔 Fn 𝑧 ∧ 𝑧 ⊆ 𝐴) → dom 𝑔 ⊆ 𝐴) |
7 | 6 | adantrr 755 | . . . 4 ⊢ ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)) → dom 𝑔 ⊆ 𝐴) |
8 | 7 | 3adant3 1127 | . . 3 ⊢ ((𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔 ⊆ 𝐴) |
9 | 8 | exlimiv 2008 | . 2 ⊢ (∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))) → dom 𝑔 ⊆ 𝐴) |
10 | 3, 9 | sylbi 207 | 1 ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2140 {cab 2747 ∀wral 3051 ⊆ wss 3716 dom cdm 5267 ↾ cres 5269 Predcpred 5841 Fn wfn 6045 ‘cfv 6050 (class class class)co 6815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-iota 6013 df-fun 6052 df-fn 6053 df-fv 6058 df-ov 6818 |
This theorem is referenced by: frrlem5 32112 frrlem5d 32115 frrlem7 32118 |
Copyright terms: Public domain | W3C validator |