Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem1 Structured version   Visualization version   GIF version

Theorem frrlem1 31905
Description: Lemma for founded recursion. The final item we are interested in is the union of acceptable functions 𝐵. This lemma just changes bound variables for later use. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypothesis
Ref Expression
frrlem1.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
frrlem1 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
Distinct variable groups:   𝐴,𝑓,𝑔,𝑤,𝑥,𝑦,𝑧   𝑓,𝐺,𝑔,𝑤,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔)

Proof of Theorem frrlem1
StepHypRef Expression
1 frrlem1.1 . 2 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 fneq1 6017 . . . . . 6 (𝑓 = 𝑔 → (𝑓 Fn 𝑥𝑔 Fn 𝑥))
3 fveq1 6228 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4 reseq1 5422 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))
54oveq2d 6706 . . . . . . . 8 (𝑓 = 𝑔 → (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))
63, 5eqeq12d 2666 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
76ralbidv 3015 . . . . . 6 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
82, 73anbi13d 1441 . . . . 5 (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))))
98exbidv 1890 . . . 4 (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))))))
10 fneq2 6018 . . . . . 6 (𝑥 = 𝑧 → (𝑔 Fn 𝑥𝑔 Fn 𝑧))
11 sseq1 3659 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
12 sseq2 3660 . . . . . . . . 9 (𝑥 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧))
1312raleqbi1dv 3176 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧))
14 predeq3 5722 . . . . . . . . . 10 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1514sseq1d 3665 . . . . . . . . 9 (𝑦 = 𝑤 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))
1615cbvralv 3201 . . . . . . . 8 (∀𝑦𝑧 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑧 ↔ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)
1713, 16syl6bb 276 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧))
1811, 17anbi12d 747 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧)))
19 raleq 3168 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))))
20 fveq2 6229 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑔𝑦) = (𝑔𝑤))
21 id 22 . . . . . . . . . 10 (𝑦 = 𝑤𝑦 = 𝑤)
2214reseq2d 5428 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))
2321, 22oveq12d 6708 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))
2420, 23eqeq12d 2666 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
2524cbvralv 3201 . . . . . . 7 (∀𝑦𝑧 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))
2619, 25syl6bb 276 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
2710, 18, 263anbi123d 1439 . . . . 5 (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))))
2827cbvexv 2311 . . . 4 (∃𝑥(𝑔 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝑦𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤)))))
299, 28syl6bb 276 . . 3 (𝑓 = 𝑔 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))))
3029cbvabv 2776 . 2 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
311, 30eqtri 2673 1 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧𝐴 ∧ ∀𝑤𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))}
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1054   = wceq 1523  wex 1744  {cab 2637  wral 2941  wss 3607  cres 5145  Predcpred 5717   Fn wfn 5921  cfv 5926  (class class class)co 6690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-ov 6693
This theorem is referenced by:  frrlem2  31906  frrlem3  31907  frrlem4  31908  frrlem5e  31913
  Copyright terms: Public domain W3C validator