![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frmdval | Structured version Visualization version GIF version |
Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
frmdval.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
frmdval.b | ⊢ (𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼) |
frmdval.p | ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
frmdval | ⊢ (𝐼 ∈ 𝑉 → 𝑀 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmdval.m | . 2 ⊢ 𝑀 = (freeMnd‘𝐼) | |
2 | df-frmd 17587 | . . . 4 ⊢ freeMnd = (𝑖 ∈ V ↦ {〈(Base‘ndx), Word 𝑖〉, 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉}) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐼 ∈ 𝑉 → freeMnd = (𝑖 ∈ V ↦ {〈(Base‘ndx), Word 𝑖〉, 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉})) |
4 | wrdeq 13513 | . . . . . 6 ⊢ (𝑖 = 𝐼 → Word 𝑖 = Word 𝐼) | |
5 | frmdval.b | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼) | |
6 | 5 | eqcomd 2766 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → Word 𝐼 = 𝐵) |
7 | 4, 6 | sylan9eqr 2816 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → Word 𝑖 = 𝐵) |
8 | 7 | opeq2d 4560 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → 〈(Base‘ndx), Word 𝑖〉 = 〈(Base‘ndx), 𝐵〉) |
9 | 7 | sqxpeqd 5298 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → (Word 𝑖 × Word 𝑖) = (𝐵 × 𝐵)) |
10 | 9 | reseq2d 5551 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = ( ++ ↾ (𝐵 × 𝐵))) |
11 | frmdval.p | . . . . . 6 ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) | |
12 | 10, 11 | syl6eqr 2812 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = + ) |
13 | 12 | opeq2d 4560 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉 = 〈(+g‘ndx), + 〉) |
14 | 8, 13 | preq12d 4420 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑖 = 𝐼) → {〈(Base‘ndx), Word 𝑖〉, 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) |
15 | elex 3352 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
16 | prex 5058 | . . . 4 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ∈ V | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ∈ V) |
18 | 3, 14, 15, 17 | fvmptd 6450 | . 2 ⊢ (𝐼 ∈ 𝑉 → (freeMnd‘𝐼) = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) |
19 | 1, 18 | syl5eq 2806 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝑀 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 {cpr 4323 〈cop 4327 ↦ cmpt 4881 × cxp 5264 ↾ cres 5268 ‘cfv 6049 Word cword 13477 ++ cconcat 13479 ndxcnx 16056 Basecbs 16059 +gcplusg 16143 freeMndcfrmd 17585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 df-frmd 17587 |
This theorem is referenced by: frmdbas 17590 frmdplusg 17592 |
Copyright terms: Public domain | W3C validator |