Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3lem Structured version   Visualization version   GIF version

Theorem frmdup3lem 17604
 Description: Lemma for frmdup3 17605. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
frmdup3.m 𝑀 = (freeMnd‘𝐼)
frmdup3.b 𝐵 = (Base‘𝐺)
frmdup3.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdup3lem (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝑀   𝑥,𝐹   𝑥,𝑈   𝑥,𝑉

Proof of Theorem frmdup3lem
StepHypRef Expression
1 eqid 2760 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
2 frmdup3.b . . . . . 6 𝐵 = (Base‘𝐺)
31, 2mhmf 17541 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝐺) → 𝐹:(Base‘𝑀)⟶𝐵)
43ad2antrl 766 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹:(Base‘𝑀)⟶𝐵)
5 frmdup3.m . . . . . . . 8 𝑀 = (freeMnd‘𝐼)
65, 1frmdbas 17590 . . . . . . 7 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
763ad2ant2 1129 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (Base‘𝑀) = Word 𝐼)
87adantr 472 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → (Base‘𝑀) = Word 𝐼)
98feq2d 6192 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → (𝐹:(Base‘𝑀)⟶𝐵𝐹:Word 𝐼𝐵))
104, 9mpbid 222 . . 3 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹:Word 𝐼𝐵)
1110feqmptd 6411 . 2 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐹𝑥)))
12 simplrl 819 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → 𝐹 ∈ (𝑀 MndHom 𝐺))
13 simpr 479 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → 𝑥 ∈ Word 𝐼)
14 frmdup3.u . . . . . . . . . 10 𝑈 = (varFMnd𝐼)
1514vrmdf 17596 . . . . . . . . 9 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
16153ad2ant2 1129 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶Word 𝐼)
177feq3d 6193 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼))
1816, 17mpbird 247 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝑀))
1918ad2antrr 764 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → 𝑈:𝐼⟶(Base‘𝑀))
20 wrdco 13777 . . . . . 6 ((𝑥 ∈ Word 𝐼𝑈:𝐼⟶(Base‘𝑀)) → (𝑈𝑥) ∈ Word (Base‘𝑀))
2113, 19, 20syl2anc 696 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝑈𝑥) ∈ Word (Base‘𝑀))
221gsumwmhm 17583 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝑈𝑥) ∈ Word (Base‘𝑀)) → (𝐹‘(𝑀 Σg (𝑈𝑥))) = (𝐺 Σg (𝐹 ∘ (𝑈𝑥))))
2312, 21, 22syl2anc 696 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹‘(𝑀 Σg (𝑈𝑥))) = (𝐺 Σg (𝐹 ∘ (𝑈𝑥))))
24 simpll2 1257 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → 𝐼𝑉)
255, 14frmdgsum 17600 . . . . . 6 ((𝐼𝑉𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
2624, 13, 25syl2anc 696 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
2726fveq2d 6356 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹‘(𝑀 Σg (𝑈𝑥))) = (𝐹𝑥))
28 coass 5815 . . . . . 6 ((𝐹𝑈) ∘ 𝑥) = (𝐹 ∘ (𝑈𝑥))
29 simplrr 820 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹𝑈) = 𝐴)
3029coeq1d 5439 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → ((𝐹𝑈) ∘ 𝑥) = (𝐴𝑥))
3128, 30syl5eqr 2808 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹 ∘ (𝑈𝑥)) = (𝐴𝑥))
3231oveq2d 6829 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐺 Σg (𝐹 ∘ (𝑈𝑥))) = (𝐺 Σg (𝐴𝑥)))
3323, 27, 323eqtr3d 2802 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹𝑥) = (𝐺 Σg (𝐴𝑥)))
3433mpteq2dva 4896 . 2 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → (𝑥 ∈ Word 𝐼 ↦ (𝐹𝑥)) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
3511, 34eqtrd 2794 1 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ↦ cmpt 4881   ∘ ccom 5270  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  Word cword 13477  Basecbs 16059   Σg cgsu 16303  Mndcmnd 17495   MndHom cmhm 17534  freeMndcfrmd 17585  varFMndcvrmd 17586 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-0g 16304  df-gsum 16305  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-frmd 17587  df-vrmd 17588 This theorem is referenced by:  frmdup3  17605  elmrsubrn  31724
 Copyright terms: Public domain W3C validator