![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frmd0 | Structured version Visualization version GIF version |
Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
Ref | Expression |
---|---|
frmd0 | ⊢ ∅ = (0g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2761 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2761 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
3 | eqid 2761 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
4 | wrd0 13537 | . . . 4 ⊢ ∅ ∈ Word 𝐼 | |
5 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
6 | 5, 1 | frmdbas 17611 | . . . 4 ⊢ (𝐼 ∈ V → (Base‘𝑀) = Word 𝐼) |
7 | 4, 6 | syl5eleqr 2847 | . . 3 ⊢ (𝐼 ∈ V → ∅ ∈ (Base‘𝑀)) |
8 | 5, 1, 3 | frmdadd 17614 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
9 | 7, 8 | sylan 489 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
10 | 5, 1 | frmdelbas 17612 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼) |
11 | 10 | adantl 473 | . . . . 5 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼) |
12 | ccatlid 13579 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥) |
14 | 9, 13 | eqtrd 2795 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = 𝑥) |
15 | 5, 1, 3 | frmdadd 17614 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
16 | 15 | ancoms 468 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
17 | 7, 16 | sylan 489 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
18 | ccatrid 13580 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥) | |
19 | 11, 18 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥) |
20 | 17, 19 | eqtrd 2795 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = 𝑥) |
21 | 1, 2, 3, 7, 14, 20 | ismgmid2 17489 | . 2 ⊢ (𝐼 ∈ V → ∅ = (0g‘𝑀)) |
22 | fvprc 6348 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (freeMnd‘𝐼) = ∅) | |
23 | 5, 22 | syl5eq 2807 | . . . 4 ⊢ (¬ 𝐼 ∈ V → 𝑀 = ∅) |
24 | 23 | fveq2d 6358 | . . 3 ⊢ (¬ 𝐼 ∈ V → (0g‘𝑀) = (0g‘∅)) |
25 | 0g0 17485 | . . 3 ⊢ ∅ = (0g‘∅) | |
26 | 24, 25 | syl6reqr 2814 | . 2 ⊢ (¬ 𝐼 ∈ V → ∅ = (0g‘𝑀)) |
27 | 21, 26 | pm2.61i 176 | 1 ⊢ ∅ = (0g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∅c0 4059 ‘cfv 6050 (class class class)co 6815 Word cword 13498 ++ cconcat 13500 Basecbs 16080 +gcplusg 16164 0gc0g 16323 freeMndcfrmd 17606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-fzo 12681 df-hash 13333 df-word 13506 df-concat 13508 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-plusg 16177 df-0g 16325 df-frmd 17608 |
This theorem is referenced by: frmdsssubm 17620 frmdgsum 17621 frmdup1 17623 frgpmhm 18399 mrsub0 31742 elmrsubrn 31746 |
Copyright terms: Public domain | W3C validator |