![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmup3 | Structured version Visualization version GIF version |
Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
Ref | Expression |
---|---|
frlmup.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmup.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmup.c | ⊢ 𝐶 = (Base‘𝑇) |
frlmup.v | ⊢ · = ( ·𝑠 ‘𝑇) |
frlmup.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘𝑓 · 𝐴))) |
frlmup.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
frlmup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
frlmup.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
frlmup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
frlmup.k | ⊢ 𝐾 = (LSpan‘𝑇) |
Ref | Expression |
---|---|
frlmup3 | ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmup.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
3 | frlmup.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
4 | frlmup.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑇) | |
5 | frlmup.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘𝑓 · 𝐴))) | |
6 | frlmup.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
7 | frlmup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
8 | frlmup.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
9 | frlmup.a | . . . 4 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | frlmup1 20359 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
11 | eqid 2760 | . . . . . . . 8 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
12 | 11 | lmodring 19093 | . . . . . . 7 ⊢ (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring) |
13 | 6, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
14 | 8, 13 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
15 | eqid 2760 | . . . . . 6 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
16 | 15, 1, 2 | uvcff 20352 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
17 | 14, 7, 16 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
18 | frn 6214 | . . . 4 ⊢ ((𝑅 unitVec 𝐼):𝐼⟶𝐵 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵) |
20 | eqid 2760 | . . . 4 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
21 | frlmup.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑇) | |
22 | 2, 20, 21 | lmhmlsp 19271 | . . 3 ⊢ ((𝐸 ∈ (𝐹 LMHom 𝑇) ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
23 | 10, 19, 22 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
24 | 2, 3 | lmhmf 19256 | . . . . . 6 ⊢ (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸:𝐵⟶𝐶) |
25 | 10, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐸:𝐵⟶𝐶) |
26 | ffn 6206 | . . . . 5 ⊢ (𝐸:𝐵⟶𝐶 → 𝐸 Fn 𝐵) | |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐸 Fn 𝐵) |
28 | fnima 6171 | . . . 4 ⊢ (𝐸 Fn 𝐵 → (𝐸 “ 𝐵) = ran 𝐸) | |
29 | 27, 28 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = ran 𝐸) |
30 | eqid 2760 | . . . . . . . 8 ⊢ (LBasis‘𝐹) = (LBasis‘𝐹) | |
31 | 1, 15, 30 | frlmlbs 20358 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
32 | 14, 7, 31 | syl2anc 696 | . . . . . 6 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
33 | 2, 30, 20 | lbssp 19301 | . . . . . 6 ⊢ (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
34 | 32, 33 | syl 17 | . . . . 5 ⊢ (𝜑 → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
35 | 34 | eqcomd 2766 | . . . 4 ⊢ (𝜑 → 𝐵 = ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) |
36 | 35 | imaeq2d 5624 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
37 | 29, 36 | eqtr3d 2796 | . 2 ⊢ (𝜑 → ran 𝐸 = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
38 | imaco 5801 | . . . 4 ⊢ ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) | |
39 | ffn 6206 | . . . . . . . 8 ⊢ (𝐴:𝐼⟶𝐶 → 𝐴 Fn 𝐼) | |
40 | 9, 39 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
41 | ffn 6206 | . . . . . . . . 9 ⊢ ((𝑅 unitVec 𝐼):𝐼⟶𝐵 → (𝑅 unitVec 𝐼) Fn 𝐼) | |
42 | 17, 41 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 unitVec 𝐼) Fn 𝐼) |
43 | fnco 6160 | . . . . . . . 8 ⊢ ((𝐸 Fn 𝐵 ∧ (𝑅 unitVec 𝐼) Fn 𝐼 ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) | |
44 | 27, 42, 19, 43 | syl3anc 1477 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) |
45 | fvco2 6436 | . . . . . . . . 9 ⊢ (((𝑅 unitVec 𝐼) Fn 𝐼 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) | |
46 | 42, 45 | sylan 489 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) |
47 | 6 | adantr 472 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑇 ∈ LMod) |
48 | 7 | adantr 472 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
49 | 8 | adantr 472 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑅 = (Scalar‘𝑇)) |
50 | 9 | adantr 472 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐴:𝐼⟶𝐶) |
51 | simpr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑢 ∈ 𝐼) | |
52 | 1, 2, 3, 4, 5, 47, 48, 49, 50, 51, 15 | frlmup2 20360 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)) = (𝐴‘𝑢)) |
53 | 46, 52 | eqtr2d 2795 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐴‘𝑢) = ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢)) |
54 | 40, 44, 53 | eqfnfvd 6478 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐸 ∘ (𝑅 unitVec 𝐼))) |
55 | 54 | imaeq1d 5623 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼)) |
56 | fnima 6171 | . . . . . 6 ⊢ (𝐴 Fn 𝐼 → (𝐴 “ 𝐼) = ran 𝐴) | |
57 | 40, 56 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ran 𝐴) |
58 | 55, 57 | eqtr3d 2796 | . . . 4 ⊢ (𝜑 → ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = ran 𝐴) |
59 | fnima 6171 | . . . . . 6 ⊢ ((𝑅 unitVec 𝐼) Fn 𝐼 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) | |
60 | 42, 59 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) |
61 | 60 | imaeq2d 5624 | . . . 4 ⊢ (𝜑 → (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
62 | 38, 58, 61 | 3eqtr3a 2818 | . . 3 ⊢ (𝜑 → ran 𝐴 = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
63 | 62 | fveq2d 6357 | . 2 ⊢ (𝜑 → (𝐾‘ran 𝐴) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
64 | 23, 37, 63 | 3eqtr4d 2804 | 1 ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ↦ cmpt 4881 ran crn 5267 “ cima 5269 ∘ ccom 5270 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ∘𝑓 cof 7061 Basecbs 16079 Scalarcsca 16166 ·𝑠 cvsca 16167 Σg cgsu 16323 Ringcrg 18767 LModclmod 19085 LSpanclspn 19193 LMHom clmhm 19241 LBasisclbs 19296 freeLMod cfrlm 20312 unitVec cuvc 20343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-sup 8515 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-fzo 12680 df-seq 13016 df-hash 13332 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-hom 16188 df-cco 16189 df-0g 16324 df-gsum 16325 df-prds 16330 df-pws 16332 df-mre 16468 df-mrc 16469 df-acs 16471 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mulg 17762 df-subg 17812 df-ghm 17879 df-cntz 17970 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-subrg 19000 df-lmod 19087 df-lss 19155 df-lsp 19194 df-lmhm 19244 df-lbs 19297 df-sra 19394 df-rgmod 19395 df-nzr 19480 df-dsmm 20298 df-frlm 20313 df-uvc 20344 |
This theorem is referenced by: ellspd 20363 indlcim 20401 lnrfg 38209 |
Copyright terms: Public domain | W3C validator |