MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsubgval Structured version   Visualization version   GIF version

Theorem frlmsubgval 20325
Description: Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
frlmsubval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsubval.b 𝐵 = (Base‘𝑌)
frlmsubval.r (𝜑𝑅 ∈ Ring)
frlmsubval.i (𝜑𝐼𝑊)
frlmsubval.f (𝜑𝐹𝐵)
frlmsubval.g (𝜑𝐺𝐵)
frlmsubval.a = (-g𝑅)
frlmsubval.p 𝑀 = (-g𝑌)
Assertion
Ref Expression
frlmsubgval (𝜑 → (𝐹𝑀𝐺) = (𝐹𝑓 𝐺))

Proof of Theorem frlmsubgval
StepHypRef Expression
1 frlmsubval.p . . . 4 𝑀 = (-g𝑌)
2 frlmsubval.r . . . . . 6 (𝜑𝑅 ∈ Ring)
3 frlmsubval.i . . . . . 6 (𝜑𝐼𝑊)
4 frlmsubval.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
5 frlmsubval.b . . . . . . 7 𝐵 = (Base‘𝑌)
64, 5frlmpws 20311 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
72, 3, 6syl2anc 573 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
87fveq2d 6337 . . . 4 (𝜑 → (-g𝑌) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
91, 8syl5eq 2817 . . 3 (𝜑𝑀 = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
109oveqd 6813 . 2 (𝜑 → (𝐹𝑀𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
11 rlmlmod 19420 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
122, 11syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
13 eqid 2771 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
1413pwslmod 19183 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
1512, 3, 14syl2anc 573 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
16 eqid 2771 . . . . . 6 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
174, 5, 16frlmlss 20312 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
182, 3, 17syl2anc 573 . . . 4 (𝜑𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
1916lsssubg 19170 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
2015, 18, 19syl2anc 573 . . 3 (𝜑𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
21 frlmsubval.f . . 3 (𝜑𝐹𝐵)
22 frlmsubval.g . . 3 (𝜑𝐺𝐵)
23 eqid 2771 . . . 4 (-g‘((ringLMod‘𝑅) ↑s 𝐼)) = (-g‘((ringLMod‘𝑅) ↑s 𝐼))
24 eqid 2771 . . . 4 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
25 eqid 2771 . . . 4 (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
2623, 24, 25subgsub 17814 . . 3 ((𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐹𝐵𝐺𝐵) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
2720, 21, 22, 26syl3anc 1476 . 2 (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
28 lmodgrp 19080 . . . 4 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp)
292, 11, 283syl 18 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ Grp)
30 eqid 2771 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
314, 30, 5frlmbasmap 20320 . . . . 5 ((𝐼𝑊𝐹𝐵) → 𝐹 ∈ ((Base‘𝑅) ↑𝑚 𝐼))
323, 21, 31syl2anc 573 . . . 4 (𝜑𝐹 ∈ ((Base‘𝑅) ↑𝑚 𝐼))
33 rlmbas 19410 . . . . . 6 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
3413, 33pwsbas 16355 . . . . 5 (((ringLMod‘𝑅) ∈ Grp ∧ 𝐼𝑊) → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3529, 3, 34syl2anc 573 . . . 4 (𝜑 → ((Base‘𝑅) ↑𝑚 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3632, 35eleqtrd 2852 . . 3 (𝜑𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
374, 30, 5frlmbasmap 20320 . . . . 5 ((𝐼𝑊𝐺𝐵) → 𝐺 ∈ ((Base‘𝑅) ↑𝑚 𝐼))
383, 22, 37syl2anc 573 . . . 4 (𝜑𝐺 ∈ ((Base‘𝑅) ↑𝑚 𝐼))
3938, 35eleqtrd 2852 . . 3 (𝜑𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
40 eqid 2771 . . . 4 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
41 frlmsubval.a . . . . 5 = (-g𝑅)
42 rlmsub 19413 . . . . 5 (-g𝑅) = (-g‘(ringLMod‘𝑅))
4341, 42eqtri 2793 . . . 4 = (-g‘(ringLMod‘𝑅))
4413, 40, 43, 23pwssub 17737 . . 3 ((((ringLMod‘𝑅) ∈ Grp ∧ 𝐼𝑊) ∧ (𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹𝑓 𝐺))
4529, 3, 36, 39, 44syl22anc 1477 . 2 (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹𝑓 𝐺))
4610, 27, 453eqtr2d 2811 1 (𝜑 → (𝐹𝑀𝐺) = (𝐹𝑓 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cfv 6030  (class class class)co 6796  𝑓 cof 7046  𝑚 cmap 8013  Basecbs 16064  s cress 16065  s cpws 16315  Grpcgrp 17630  -gcsg 17632  SubGrpcsubg 17796  Ringcrg 18755  LModclmod 19073  LSubSpclss 19142  ringLModcrglmod 19384   freeLMod cfrlm 20307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-hom 16174  df-cco 16175  df-0g 16310  df-prds 16316  df-pws 16318  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-mgp 18698  df-ur 18710  df-ring 18757  df-subrg 18988  df-lmod 19075  df-lss 19143  df-sra 19387  df-rgmod 19388  df-dsmm 20293  df-frlm 20308
This theorem is referenced by:  matsubgcell  20457  rrxds  23400
  Copyright terms: Public domain W3C validator