![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmpwfi | Structured version Visualization version GIF version |
Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
frlmpwfi.r | ⊢ 𝑅 = (ℤ/nℤ‘2) |
frlmpwfi.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmpwfi.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
frlmpwfi | ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmpwfi.r | . . . . . 6 ⊢ 𝑅 = (ℤ/nℤ‘2) | |
2 | fvex 6364 | . . . . . 6 ⊢ (ℤ/nℤ‘2) ∈ V | |
3 | 1, 2 | eqeltri 2836 | . . . . 5 ⊢ 𝑅 ∈ V |
4 | frlmpwfi.y | . . . . . 6 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
5 | eqid 2761 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | eqid 2761 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | eqid 2761 | . . . . . 6 ⊢ {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} | |
8 | 4, 5, 6, 7 | frlmbas 20322 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ 𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
9 | 3, 8 | mpan 708 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = (Base‘𝑌)) |
10 | frlmpwfi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
11 | 9, 10 | syl6eqr 2813 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} = 𝐵) |
12 | eqid 2761 | . . . 4 ⊢ {𝑥 ∈ (2𝑜 ↑𝑚 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2𝑜 ↑𝑚 𝐼) ∣ 𝑥 finSupp ∅} | |
13 | enrefg 8156 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ≈ 𝐼) | |
14 | 2nn 11398 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
15 | 1, 5 | znhash 20130 | . . . . . . . 8 ⊢ (2 ∈ ℕ → (♯‘(Base‘𝑅)) = 2) |
16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘(Base‘𝑅)) = 2 |
17 | hash2 13406 | . . . . . . 7 ⊢ (♯‘2𝑜) = 2 | |
18 | 16, 17 | eqtr4i 2786 | . . . . . 6 ⊢ (♯‘(Base‘𝑅)) = (♯‘2𝑜) |
19 | 2nn0 11522 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
20 | 16, 19 | eqeltri 2836 | . . . . . . . 8 ⊢ (♯‘(Base‘𝑅)) ∈ ℕ0 |
21 | fvex 6364 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
22 | hashclb 13362 | . . . . . . . . 9 ⊢ ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0)) | |
23 | 21, 22 | ax-mp 5 | . . . . . . . 8 ⊢ ((Base‘𝑅) ∈ Fin ↔ (♯‘(Base‘𝑅)) ∈ ℕ0) |
24 | 20, 23 | mpbir 221 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ Fin |
25 | 2onn 7892 | . . . . . . . 8 ⊢ 2𝑜 ∈ ω | |
26 | nnfi 8321 | . . . . . . . 8 ⊢ (2𝑜 ∈ ω → 2𝑜 ∈ Fin) | |
27 | 25, 26 | ax-mp 5 | . . . . . . 7 ⊢ 2𝑜 ∈ Fin |
28 | hashen 13350 | . . . . . . 7 ⊢ (((Base‘𝑅) ∈ Fin ∧ 2𝑜 ∈ Fin) → ((♯‘(Base‘𝑅)) = (♯‘2𝑜) ↔ (Base‘𝑅) ≈ 2𝑜)) | |
29 | 24, 27, 28 | mp2an 710 | . . . . . 6 ⊢ ((♯‘(Base‘𝑅)) = (♯‘2𝑜) ↔ (Base‘𝑅) ≈ 2𝑜) |
30 | 18, 29 | mpbi 220 | . . . . 5 ⊢ (Base‘𝑅) ≈ 2𝑜 |
31 | 30 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑅) ≈ 2𝑜) |
32 | 1 | zncrng 20116 | . . . . . 6 ⊢ (2 ∈ ℕ0 → 𝑅 ∈ CRing) |
33 | crngring 18779 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
34 | 19, 32, 33 | mp2b 10 | . . . . 5 ⊢ 𝑅 ∈ Ring |
35 | 5, 6 | ring0cl 18790 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
36 | 34, 35 | mp1i 13 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑅) ∈ (Base‘𝑅)) |
37 | 2on0 7741 | . . . . . 6 ⊢ 2𝑜 ≠ ∅ | |
38 | 2on 7740 | . . . . . . 7 ⊢ 2𝑜 ∈ On | |
39 | on0eln0 5942 | . . . . . . 7 ⊢ (2𝑜 ∈ On → (∅ ∈ 2𝑜 ↔ 2𝑜 ≠ ∅)) | |
40 | 38, 39 | ax-mp 5 | . . . . . 6 ⊢ (∅ ∈ 2𝑜 ↔ 2𝑜 ≠ ∅) |
41 | 37, 40 | mpbir 221 | . . . . 5 ⊢ ∅ ∈ 2𝑜 |
42 | 41 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ∅ ∈ 2𝑜) |
43 | 7, 12, 13, 31, 36, 42 | mapfien2 8482 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g‘𝑅)} ≈ {𝑥 ∈ (2𝑜 ↑𝑚 𝐼) ∣ 𝑥 finSupp ∅}) |
44 | 11, 43 | eqbrtrrd 4829 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ {𝑥 ∈ (2𝑜 ↑𝑚 𝐼) ∣ 𝑥 finSupp ∅}) |
45 | 12 | pwfi2en 38188 | . 2 ⊢ (𝐼 ∈ 𝑉 → {𝑥 ∈ (2𝑜 ↑𝑚 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) |
46 | entr 8176 | . 2 ⊢ ((𝐵 ≈ {𝑥 ∈ (2𝑜 ↑𝑚 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2𝑜 ↑𝑚 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | |
47 | 44, 45, 46 | syl2anc 696 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 {crab 3055 Vcvv 3341 ∩ cin 3715 ∅c0 4059 𝒫 cpw 4303 class class class wbr 4805 Oncon0 5885 ‘cfv 6050 (class class class)co 6815 ωcom 7232 2𝑜c2o 7725 ↑𝑚 cmap 8026 ≈ cen 8121 Fincfn 8124 finSupp cfsupp 8443 ℕcn 11233 2c2 11283 ℕ0cn0 11505 ♯chash 13332 Basecbs 16080 0gc0g 16323 Ringcrg 18768 CRingccrg 18769 ℤ/nℤczn 20074 freeLMod cfrlm 20313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-addf 10228 ax-mulf 10229 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-tpos 7523 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-er 7914 df-ec 7916 df-qs 7920 df-map 8028 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-sup 8516 df-inf 8517 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-fl 12808 df-mod 12884 df-seq 13017 df-hash 13333 df-dvds 15204 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-starv 16179 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-hom 16189 df-cco 16190 df-0g 16325 df-prds 16331 df-pws 16333 df-imas 16391 df-qus 16392 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-mhm 17557 df-grp 17647 df-minusg 17648 df-sbg 17649 df-mulg 17763 df-subg 17813 df-nsg 17814 df-eqg 17815 df-ghm 17880 df-cmn 18416 df-abl 18417 df-mgp 18711 df-ur 18723 df-ring 18770 df-cring 18771 df-oppr 18844 df-dvdsr 18862 df-rnghom 18938 df-subrg 19001 df-lmod 19088 df-lss 19156 df-lsp 19195 df-sra 19395 df-rgmod 19396 df-lidl 19397 df-rsp 19398 df-2idl 19455 df-cnfld 19970 df-zring 20042 df-zrh 20075 df-zn 20078 df-dsmm 20299 df-frlm 20314 |
This theorem is referenced by: isnumbasgrplem3 38196 |
Copyright terms: Public domain | W3C validator |