MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmplusgval Structured version   Visualization version   GIF version

Theorem frlmplusgval 20323
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmplusgval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmplusgval.b 𝐵 = (Base‘𝑌)
frlmplusgval.r (𝜑𝑅𝑉)
frlmplusgval.i (𝜑𝐼𝑊)
frlmplusgval.f (𝜑𝐹𝐵)
frlmplusgval.g (𝜑𝐺𝐵)
frlmplusgval.a + = (+g𝑅)
frlmplusgval.p = (+g𝑌)
Assertion
Ref Expression
frlmplusgval (𝜑 → (𝐹 𝐺) = (𝐹𝑓 + 𝐺))

Proof of Theorem frlmplusgval
StepHypRef Expression
1 frlmplusgval.r . . . . . 6 (𝜑𝑅𝑉)
2 frlmplusgval.i . . . . . 6 (𝜑𝐼𝑊)
3 frlmplusgval.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
4 eqid 2770 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
53, 4frlmpws 20310 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
61, 2, 5syl2anc 565 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
76fveq2d 6336 . . . 4 (𝜑 → (+g𝑌) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
8 frlmplusgval.p . . . 4 = (+g𝑌)
9 fvex 6342 . . . . 5 (Base‘𝑌) ∈ V
10 eqid 2770 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))
11 eqid 2770 . . . . . 6 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
1210, 11ressplusg 16200 . . . . 5 ((Base‘𝑌) ∈ V → (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌))))
139, 12ax-mp 5 . . . 4 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝑌)))
147, 8, 133eqtr4g 2829 . . 3 (𝜑 = (+g‘((ringLMod‘𝑅) ↑s 𝐼)))
1514oveqd 6809 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺))
16 eqid 2770 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
17 eqid 2770 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
18 fvexd 6344 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
19 frlmplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
203, 19frlmpws 20310 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
211, 2, 20syl2anc 565 . . . . . . 7 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
2221fveq2d 6336 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
2319, 22syl5eq 2816 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
24 eqid 2770 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
2524, 17ressbasss 16138 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
2623, 25syl6eqss 3802 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
27 frlmplusgval.f . . . 4 (𝜑𝐹𝐵)
2826, 27sseldd 3751 . . 3 (𝜑𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
29 frlmplusgval.g . . . 4 (𝜑𝐺𝐵)
3026, 29sseldd 3751 . . 3 (𝜑𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
31 frlmplusgval.a . . . 4 + = (+g𝑅)
32 rlmplusg 19410 . . . 4 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3331, 32eqtri 2792 . . 3 + = (+g‘(ringLMod‘𝑅))
3416, 17, 18, 2, 28, 30, 33, 11pwsplusgval 16357 . 2 (𝜑 → (𝐹(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹𝑓 + 𝐺))
3515, 34eqtrd 2804 1 (𝜑 → (𝐹 𝐺) = (𝐹𝑓 + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  Vcvv 3349  cfv 6031  (class class class)co 6792  𝑓 cof 7041  Basecbs 16063  s cress 16064  +gcplusg 16148  s cpws 16314  ringLModcrglmod 19383   freeLMod cfrlm 20306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-hom 16173  df-cco 16174  df-prds 16315  df-pws 16317  df-sra 19386  df-rgmod 19387  df-dsmm 20292  df-frlm 20307
This theorem is referenced by:  frlmphl  20336  frlmup1  20353  matplusg2  20449  zlmodzxzadd  42654
  Copyright terms: Public domain W3C validator