MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmgsum Structured version   Visualization version   GIF version

Theorem frlmgsum 20327
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmgsum.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmgsum.b 𝐵 = (Base‘𝑌)
frlmgsum.z 0 = (0g𝑌)
frlmgsum.i (𝜑𝐼𝑉)
frlmgsum.j (𝜑𝐽𝑊)
frlmgsum.r (𝜑𝑅 ∈ Ring)
frlmgsum.f ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
frlmgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
frlmgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem frlmgsum
StepHypRef Expression
1 frlmgsum.r . . . 4 (𝜑𝑅 ∈ Ring)
2 frlmgsum.i . . . 4 (𝜑𝐼𝑉)
3 frlmgsum.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
4 frlmgsum.b . . . . 5 𝐵 = (Base‘𝑌)
53, 4frlmpws 20310 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
61, 2, 5syl2anc 565 . . 3 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
76oveq1d 6807 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
8 eqid 2770 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
9 eqid 2770 . . 3 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
10 eqid 2770 . . 3 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
11 ovexd 6824 . . 3 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ V)
12 frlmgsum.j . . 3 (𝜑𝐽𝑊)
13 eqid 2770 . . . . . 6 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
143, 4, 13frlmlss 20311 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
151, 2, 14syl2anc 565 . . . 4 (𝜑𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
168, 13lssss 19146 . . . 4 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
1715, 16syl 17 . . 3 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
18 frlmgsum.f . . . 4 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
19 eqid 2770 . . . 4 (𝑦𝐽 ↦ (𝑥𝐼𝑈)) = (𝑦𝐽 ↦ (𝑥𝐼𝑈))
2018, 19fmptd 6527 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽𝐵)
21 rlmlmod 19419 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
221, 21syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
23 eqid 2770 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
2423pwslmod 19182 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
2522, 2, 24syl2anc 565 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
26 eqid 2770 . . . . 5 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
2726, 13lss0cl 19156 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
2825, 15, 27syl2anc 565 . . 3 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
29 lmodcmn 19120 . . . . . . 7 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ CMnd)
3022, 29syl 17 . . . . . 6 (𝜑 → (ringLMod‘𝑅) ∈ CMnd)
31 cmnmnd 18414 . . . . . 6 ((ringLMod‘𝑅) ∈ CMnd → (ringLMod‘𝑅) ∈ Mnd)
3230, 31syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ Mnd)
3323pwsmnd 17532 . . . . 5 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
3432, 2, 33syl2anc 565 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
358, 9, 26mndlrid 17517 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd ∧ 𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
3634, 35sylan 561 . . 3 ((𝜑𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
378, 9, 10, 11, 12, 17, 20, 28, 36gsumress 17483 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
38 rlmbas 19409 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
392adantr 466 . . . . . . . . 9 ((𝜑𝑦𝐽) → 𝐼𝑉)
40 eqid 2770 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
413, 40, 4frlmbasf 20320 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝐼𝑈) ∈ 𝐵) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
4239, 18, 41syl2anc 565 . . . . . . . 8 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
43 eqid 2770 . . . . . . . . 9 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
4443fmpt 6523 . . . . . . . 8 (∀𝑥𝐼 𝑈 ∈ (Base‘𝑅) ↔ (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
4542, 44sylibr 224 . . . . . . 7 ((𝜑𝑦𝐽) → ∀𝑥𝐼 𝑈 ∈ (Base‘𝑅))
4645r19.21bi 3080 . . . . . 6 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈 ∈ (Base‘𝑅))
4746an32s 623 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈 ∈ (Base‘𝑅))
4847anasss 457 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈 ∈ (Base‘𝑅))
49 frlmgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
50 frlmgsum.z . . . . . 6 0 = (0g𝑌)
516fveq2d 6336 . . . . . . 7 (𝜑 → (0g𝑌) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5213lsssubg 19169 . . . . . . . . 9 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
5325, 15, 52syl2anc 565 . . . . . . . 8 (𝜑𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
5410, 26subg0 17807 . . . . . . . 8 (𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5553, 54syl 17 . . . . . . 7 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5651, 55eqtr4d 2807 . . . . . 6 (𝜑 → (0g𝑌) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5750, 56syl5eq 2816 . . . . 5 (𝜑0 = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5849, 57breqtrd 4810 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5923, 38, 26, 2, 12, 30, 48, 58pwsgsum 18584 . . 3 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
60 mptexg 6627 . . . . . 6 (𝐽𝑊 → (𝑦𝐽𝑈) ∈ V)
6112, 60syl 17 . . . . 5 (𝜑 → (𝑦𝐽𝑈) ∈ V)
62 fvexd 6344 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ V)
6338a1i 11 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
64 rlmplusg 19410 . . . . . 6 (+g𝑅) = (+g‘(ringLMod‘𝑅))
6564a1i 11 . . . . 5 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
6661, 1, 62, 63, 65gsumpropd 17479 . . . 4 (𝜑 → (𝑅 Σg (𝑦𝐽𝑈)) = ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈)))
6766mpteq2dv 4877 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
6859, 67eqtr4d 2807 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
697, 37, 683eqtr2d 2810 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wral 3060  Vcvv 3349  wss 3721   class class class wbr 4784  cmpt 4861  wf 6027  cfv 6031  (class class class)co 6792   finSupp cfsupp 8430  Basecbs 16063  s cress 16064  +gcplusg 16148  0gc0g 16307   Σg cgsu 16308  s cpws 16314  Mndcmnd 17501  SubGrpcsubg 17795  CMndccmn 18399  Ringcrg 18754  LModclmod 19072  LSubSpclss 19141  ringLModcrglmod 19383   freeLMod cfrlm 20306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-fzo 12673  df-seq 13008  df-hash 13321  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-hom 16173  df-cco 16174  df-0g 16309  df-gsum 16310  df-prds 16315  df-pws 16317  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-subrg 18987  df-lmod 19074  df-lss 19142  df-sra 19386  df-rgmod 19387  df-dsmm 20292  df-frlm 20307
This theorem is referenced by:  uvcresum  20348  matgsum  20459  matunitlindflem1  33731  matunitlindflem2  33732  aacllem  43068
  Copyright terms: Public domain W3C validator