MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frirr Structured version   Visualization version   GIF version

Theorem frirr 5231
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
frirr ((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem frirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → 𝑅 Fr 𝐴)
2 snssi 4472 . . . 4 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
32adantl 473 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
4 snnzg 4439 . . . 4 (𝐵𝐴 → {𝐵} ≠ ∅)
54adantl 473 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → {𝐵} ≠ ∅)
6 snex 5045 . . . 4 {𝐵} ∈ V
76frc 5220 . . 3 ((𝑅 Fr 𝐴 ∧ {𝐵} ⊆ 𝐴 ∧ {𝐵} ≠ ∅) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅)
81, 3, 5, 7syl3anc 1463 . 2 ((𝑅 Fr 𝐴𝐵𝐴) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅)
9 rabeq0 4088 . . . . . 6 ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝑦)
10 breq2 4796 . . . . . . . 8 (𝑦 = 𝐵 → (𝑥𝑅𝑦𝑥𝑅𝐵))
1110notbid 307 . . . . . . 7 (𝑦 = 𝐵 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐵))
1211ralbidv 3112 . . . . . 6 (𝑦 = 𝐵 → (∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵))
139, 12syl5bb 272 . . . . 5 (𝑦 = 𝐵 → ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵))
1413rexsng 4351 . . . 4 (𝐵𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵))
15 breq1 4795 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝐵𝐵𝑅𝐵))
1615notbid 307 . . . . 5 (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1716ralsng 4350 . . . 4 (𝐵𝐴 → (∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1814, 17bitrd 268 . . 3 (𝐵𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵))
1918adantl 473 . 2 ((𝑅 Fr 𝐴𝐵𝐴) → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵))
208, 19mpbid 222 1 ((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  wral 3038  wrex 3039  {crab 3042  wss 3703  c0 4046  {csn 4309   class class class wbr 4792   Fr wfr 5210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-br 4793  df-fr 5213
This theorem is referenced by:  efrirr  5235  predfrirr  5858  dfwe2  7134  bnj1417  31387  efrunt  31868  ifr0  39125
  Copyright terms: Public domain W3C validator