MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  friendship Structured version   Visualization version   GIF version

Theorem friendship 27386
Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018.)
Hypothesis
Ref Expression
friendship.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
friendship ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Distinct variable groups:   𝑣,𝐺,𝑤   𝑣,𝑉,𝑤

Proof of Theorem friendship
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1087 . . . 4 ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph )
2 simpr3 1089 . . . 4 ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin)
3 simpl 472 . . . 4 ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 3 < (#‘𝑉))
4 friendship.v . . . . 5 𝑉 = (Vtx‘𝐺)
54friendshipgt3 27385 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
61, 2, 3, 5syl3anc 1366 . . 3 ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
76ex 449 . 2 (3 < (#‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
8 hashcl 13185 . . . . . . . . 9 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
9 simplr 807 . . . . . . . . . . 11 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin)
10 hashge1 13216 . . . . . . . . . . . 12 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 1 ≤ (#‘𝑉))
1110ad2ant2l 797 . . . . . . . . . . 11 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → 1 ≤ (#‘𝑉))
12 nn0re 11339 . . . . . . . . . . . . . . . . 17 ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℝ)
13 3re 11132 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
14 lenlt 10154 . . . . . . . . . . . . . . . . 17 (((#‘𝑉) ∈ ℝ ∧ 3 ∈ ℝ) → ((#‘𝑉) ≤ 3 ↔ ¬ 3 < (#‘𝑉)))
1512, 13, 14sylancl 695 . . . . . . . . . . . . . . . 16 ((#‘𝑉) ∈ ℕ0 → ((#‘𝑉) ≤ 3 ↔ ¬ 3 < (#‘𝑉)))
1615biimprd 238 . . . . . . . . . . . . . . 15 ((#‘𝑉) ∈ ℕ0 → (¬ 3 < (#‘𝑉) → (#‘𝑉) ≤ 3))
1716adantr 480 . . . . . . . . . . . . . 14 (((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (¬ 3 < (#‘𝑉) → (#‘𝑉) ≤ 3))
1817com12 32 . . . . . . . . . . . . 13 (¬ 3 < (#‘𝑉) → (((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (#‘𝑉) ≤ 3))
1918adantr 480 . . . . . . . . . . . 12 ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) → (#‘𝑉) ≤ 3))
2019impcom 445 . . . . . . . . . . 11 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → (#‘𝑉) ≤ 3)
219, 11, 203jca 1261 . . . . . . . . . 10 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3))
2221exp31 629 . . . . . . . . 9 ((#‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3))))
238, 22mpcom 38 . . . . . . . 8 (𝑉 ∈ Fin → ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3)))
2423impcom 445 . . . . . . 7 (((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3))
25 hash1to3 13311 . . . . . . 7 ((𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
26 vex 3234 . . . . . . . . . 10 𝑎 ∈ V
27 eqid 2651 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
284, 271to3vfriendship 27261 . . . . . . . . . 10 ((𝑎 ∈ V ∧ (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
2926, 28mpan 706 . . . . . . . . 9 ((𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3029exlimiv 1898 . . . . . . . 8 (∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3130exlimivv 1900 . . . . . . 7 (∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3224, 25, 313syl 18 . . . . . 6 (((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3332exp31 629 . . . . 5 (¬ 3 < (#‘𝑉) → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
3433com14 96 . . . 4 (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ 3 < (#‘𝑉) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))))
35343imp 1275 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → (¬ 3 < (#‘𝑉) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
3635com12 32 . 2 (¬ 3 < (#‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)))
377, 36pm2.61i 176 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  c0 3948  {csn 4210  {cpr 4212  {ctp 4214   class class class wbr 4685  cfv 5926  Fincfn 7997  cr 9973  1c1 9975   < clt 10112  cle 10113  3c3 11109  0cn0 11330  #chash 13157  Vtxcvtx 25919  Edgcedg 25984   FriendGraph cfrgr 27236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-3o 7607  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-xadd 11985  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-reps 13338  df-csh 13581  df-s2 13639  df-s3 13640  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-gcd 15264  df-prm 15433  df-phi 15518  df-vtx 25921  df-iedg 25922  df-edg 25985  df-uhgr 25998  df-ushgr 25999  df-upgr 26022  df-umgr 26023  df-uspgr 26090  df-usgr 26091  df-fusgr 26254  df-nbgr 26270  df-vtxdg 26418  df-rgr 26509  df-rusgr 26510  df-wlks 26551  df-wlkson 26552  df-trls 26645  df-trlson 26646  df-pths 26668  df-spths 26669  df-pthson 26670  df-spthson 26671  df-wwlks 26778  df-wwlksn 26779  df-wwlksnon 26780  df-wspthsn 26781  df-wspthsnon 26782  df-clwwlk 26950  df-clwwlkn 26983  df-clwwlknon 27061  df-conngr 27165  df-frgr 27237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator