![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem5a | Structured version Visualization version GIF version |
Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 27475 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrncvvdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreglem4a.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopreglem5a | ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph ) | |
2 | simpl 474 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
3 | simpl 474 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
4 | 2, 3 | anim12i 591 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
5 | simp2 1132 | . . 3 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝐵)) | |
6 | frgrncvvdeq.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | frgrncvvdeq.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
8 | frgrwopreglem4a.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
9 | 6, 7, 8 | frgrwopreglem4a 27464 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵)) → {𝐴, 𝐵} ∈ 𝐸) |
10 | 1, 4, 5, 9 | syl3an 1164 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝐴, 𝐵} ∈ 𝐸) |
11 | simpr 479 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
12 | 11, 3 | anim12ci 592 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) |
13 | pm13.18 3013 | . . . . 5 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵)) → (𝐷‘𝑋) ≠ (𝐷‘𝐵)) | |
14 | 13 | 3adant3 1127 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑋) ≠ (𝐷‘𝐵)) |
15 | 14 | necomd 2987 | . . 3 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐵) ≠ (𝐷‘𝑋)) |
16 | 6, 7, 8 | frgrwopreglem4a 27464 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐷‘𝐵) ≠ (𝐷‘𝑋)) → {𝐵, 𝑋} ∈ 𝐸) |
17 | 1, 12, 15, 16 | syl3an 1164 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝐵, 𝑋} ∈ 𝐸) |
18 | simpr 479 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
19 | 11, 18 | anim12i 591 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) |
20 | simp3 1133 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) | |
21 | 6, 7, 8 | frgrwopreglem4a 27464 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → {𝑋, 𝑌} ∈ 𝐸) |
22 | 1, 19, 20, 21 | syl3an 1164 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝑋, 𝑌} ∈ 𝐸) |
23 | 2, 18 | anim12ci 592 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) |
24 | pm13.181 3014 | . . . . . 6 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝑌)) | |
25 | 24 | 3adant2 1126 | . . . . 5 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝑌)) |
26 | 25 | necomd 2987 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑌) ≠ (𝐷‘𝐴)) |
27 | 6, 7, 8 | frgrwopreglem4a 27464 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐷‘𝑌) ≠ (𝐷‘𝐴)) → {𝑌, 𝐴} ∈ 𝐸) |
28 | 1, 23, 26, 27 | syl3an 1164 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝑌, 𝐴} ∈ 𝐸) |
29 | 22, 28 | jca 555 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)) |
30 | 10, 17, 29 | jca31 558 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 {cpr 4323 ‘cfv 6049 Vtxcvtx 26073 Edgcedg 26138 VtxDegcvtxdg 26571 FriendGraph cfrgr 27410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-xadd 12140 df-fz 12520 df-hash 13312 df-edg 26139 df-uhgr 26152 df-ushgr 26153 df-upgr 26176 df-umgr 26177 df-uspgr 26244 df-usgr 26245 df-nbgr 26424 df-vtxdg 26572 df-frgr 27411 |
This theorem is referenced by: frgrwopreglem5 27475 |
Copyright terms: Public domain | W3C validator |