Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem2 Structured version   Visualization version   GIF version

Theorem frgrwopreglem2 27293
 Description: Lemma 2 for frgrwopreg 27303. If the set 𝐴 of vertices of degree 𝐾 is not empty in a friendship graph with at least two vertices, then 𝐾 must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 2-Jan-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrwopreglem2 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem frgrwopreglem2
StepHypRef Expression
1 n0 3964 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
32rabeq2i 3228 . . . . 5 (𝑥𝐴 ↔ (𝑥𝑉 ∧ (𝐷𝑥) = 𝐾))
4 frgrwopreg.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54vdgfrgrgt2 27278 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) → (1 < (#‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
65imp 444 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) ∧ 1 < (#‘𝑉)) → 2 ≤ ((VtxDeg‘𝐺)‘𝑥))
7 breq2 4689 . . . . . . . . . . 11 (𝐾 = (𝐷𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ (𝐷𝑥)))
8 frgrwopreg.d . . . . . . . . . . . . 13 𝐷 = (VtxDeg‘𝐺)
98fveq1i 6230 . . . . . . . . . . . 12 (𝐷𝑥) = ((VtxDeg‘𝐺)‘𝑥)
109breq2i 4693 . . . . . . . . . . 11 (2 ≤ (𝐷𝑥) ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥))
117, 10syl6bb 276 . . . . . . . . . 10 (𝐾 = (𝐷𝑥) → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
1211eqcoms 2659 . . . . . . . . 9 ((𝐷𝑥) = 𝐾 → (2 ≤ 𝐾 ↔ 2 ≤ ((VtxDeg‘𝐺)‘𝑥)))
136, 12syl5ibrcom 237 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑥𝑉) ∧ 1 < (#‘𝑉)) → ((𝐷𝑥) = 𝐾 → 2 ≤ 𝐾))
1413exp31 629 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝑥𝑉 → (1 < (#‘𝑉) → ((𝐷𝑥) = 𝐾 → 2 ≤ 𝐾))))
1514com14 96 . . . . . 6 ((𝐷𝑥) = 𝐾 → (𝑥𝑉 → (1 < (#‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾))))
1615impcom 445 . . . . 5 ((𝑥𝑉 ∧ (𝐷𝑥) = 𝐾) → (1 < (#‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
173, 16sylbi 207 . . . 4 (𝑥𝐴 → (1 < (#‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
1817exlimiv 1898 . . 3 (∃𝑥 𝑥𝐴 → (1 < (#‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
191, 18sylbi 207 . 2 (𝐴 ≠ ∅ → (1 < (#‘𝑉) → (𝐺 ∈ FriendGraph → 2 ≤ 𝐾)))
20193imp31 1276 1 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉) ∧ 𝐴 ≠ ∅) → 2 ≤ 𝐾)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ≠ wne 2823  {crab 2945   ∖ cdif 3604  ∅c0 3948   class class class wbr 4685  ‘cfv 5926  1c1 9975   < clt 10112   ≤ cle 10113  2c2 11108  #chash 13157  Vtxcvtx 25919  VtxDegcvtxdg 26417   FriendGraph cfrgr 27236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-xadd 11985  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-edg 25985  df-uhgr 25998  df-upgr 26022  df-umgr 26023  df-uspgr 26090  df-usgr 26091  df-vtxdg 26418  df-wlks 26551  df-wlkson 26552  df-trls 26645  df-trlson 26646  df-pths 26668  df-spths 26669  df-pthson 26670  df-spthson 26671  df-conngr 27165  df-frgr 27237 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator