MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregasn Structured version   Visualization version   GIF version

Theorem frgrwopregasn 27498
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 27500 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregasn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregasn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 27497 . . 3 (𝐺 ∈ FriendGraph → ∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸)
7 snidg 4345 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
87adantr 466 . . . . . 6 ((𝑋𝑉𝐴 = {𝑋}) → 𝑋 ∈ {𝑋})
9 eleq2 2839 . . . . . . 7 (𝐴 = {𝑋} → (𝑋𝐴𝑋 ∈ {𝑋}))
109adantl 467 . . . . . 6 ((𝑋𝑉𝐴 = {𝑋}) → (𝑋𝐴𝑋 ∈ {𝑋}))
118, 10mpbird 247 . . . . 5 ((𝑋𝑉𝐴 = {𝑋}) → 𝑋𝐴)
12 preq1 4404 . . . . . . . 8 (𝑣 = 𝑋 → {𝑣, 𝑤} = {𝑋, 𝑤})
1312eleq1d 2835 . . . . . . 7 (𝑣 = 𝑋 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1413ralbidv 3135 . . . . . 6 (𝑣 = 𝑋 → (∀𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 ↔ ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
1514rspcv 3456 . . . . 5 (𝑋𝐴 → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
1611, 15syl 17 . . . 4 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
17 difeq2 3873 . . . . . . 7 (𝐴 = {𝑋} → (𝑉𝐴) = (𝑉 ∖ {𝑋}))
184, 17syl5eq 2817 . . . . . 6 (𝐴 = {𝑋} → 𝐵 = (𝑉 ∖ {𝑋}))
1918adantl 467 . . . . 5 ((𝑋𝑉𝐴 = {𝑋}) → 𝐵 = (𝑉 ∖ {𝑋}))
2019raleqdv 3293 . . . 4 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2116, 20sylibd 229 . . 3 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
226, 21syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
23223impib 1108 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {crab 3065  cdif 3720  {csn 4316  {cpr 4318  cfv 6031  Vtxcvtx 26095  Edgcedg 26160  VtxDegcvtxdg 26596   FriendGraph cfrgr 27438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-xadd 12152  df-fz 12534  df-hash 13322  df-edg 26161  df-uhgr 26174  df-ushgr 26175  df-upgr 26198  df-umgr 26199  df-uspgr 26267  df-usgr 26268  df-nbgr 26448  df-vtxdg 26597  df-frgr 27439
This theorem is referenced by:  frgrwopreg1  27500
  Copyright terms: Public domain W3C validator